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Abstract

The paper is concerned with the asymptotic behavior of the correlation functions
of the characteristic polynomials of non-Hermitian random matrices with independent
entries. It is shown that the correlation functions behave like that for the Complex
Ginibre Ensemble up to a factor depending only on the fourth absolute moment of the
common probability law of the matrix entries.

1 Introduction

The Random Matrix Theory has been developed for some sixty years. The story began
with the study of symmetric and Hermitian random matrices. They have remained the most
studied ever since. However, non-Hermitian matrices are not so well studied.

The present paper is concerned with the simplest non-Hermitian ensemble which is an
analog of the Wigner ensemble. The matrices are constructed of independent identically
distributed (i.i.d.) complex random variables. More precisely, the matrices have the form

Mn =
1√
n
X =

1√
n

(xjk)
n
j,k=1, (1.1)

where xjk are i.i.d. complex random variables such that

E{xjk} = E{x2
jk} = 0, E{|xjk|2} = 1. (1.2)

Here and everywhere below E denotes the expectation with respect to (w.r.t.) all random
variables. This ensemble has various applications in physics, neuroscience, economics, etc.
For detailed information see [1] and references therein.

Define the Normalized Counting Measure (NCM) of eigenvalues as

Nn(∆) = #{λ(n)
j ∈ ∆, j = 1, . . . , n}/n,

where ∆ is an arbitrary Borel set in the complex plane,
{
λ

(n)
j

}n
j=1

are the eigenvalues of Mn.

The NCM is known to converge to the uniform distribution on the unit disc. This distribution
is called the circular law. This result has a long and rich history. Mehta was the first
who obtained it for xjk being complex Gaussian in 1967 [26]. The proof strongly relied on
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the explicit formula for the common probability density of eigenvalues due to Ginibre [17].
Unfortunately, there is no such a formula in the general case. That is why other methods have
to be used. The Hermitization approach introduced by Girko [18] appeared to be an effective
method. The main idea is to reduce the study of matrices (1.1) to the study of Hermitian
matrices using the logarithmic potential of a measure

Pµ(z) =

∫
C

log |z − ζ| dµ(ζ).

This approach was successfully developed by Girko in the next series of works [19, 20, 21, 22].
The final result in the most general case was established by Tao and Vu [38]. Notice that
there are a lot of partial results besides those listed above. The interested reader is directed
to [4].

The Central Limit Theorem (CLT) for non-Hermitian random matrices linear statistics
was proven in some partial cases in [12, 30, 31]. The best results for today were obtained by
Kopel in [25] for smooth functions and by Tao and Vu in [39] for small radii disc indicators.
Both mentioned results require <xjk and =xjk being independent and having the first four
moments as in the Gaussian case (which is often referred as GinUE similarly to the Gaussian
Unitary Ensemble (GUE) in Hermitian case). The article [39] also deals with a local regime
for these matrices. It was established that under the same conditions the k-point correlation
function converges in vague topology to that for GinUE.

One can observe that non-Hermitian random matrices are more complicated than their
Hermitian counterparts. Indeed, the Hermitian case was successfully dealt with using the
Stieltjes transform or the moments method. However, a measure in the plane can not be
recovered from its Stieltjes transform or its moments. Thus these approaches to the analysis
fail in the non-Hermitian case.

The present article suggests to apply the supersymmetry technique (SUSY). It is a rather
powerful method which is widely applied at the physical level of rigor (for instance [15, 28]).
There are also a lot of rigorous results, which were obtained using SUSY in the recent years,
e.g. [8], [9], [32], [33], [34], etc. Supersymmetry technique is usually used in order to obtain an
integral representation for ratios of determinants. Since the main spectral characteristics such
as density of states, spectral correlation functions, etc. often can be expressed via ratios of
determinants, SUSY allows to get the integral representation for these characteristics too. For
detailed discussion on connection between spectral characteristics and ratios of determinants
see [37, 5, 23]. See also [16, 29].

Let us consider the second spectral correlation function R2 defined by the equality

E

{
2

∑
1≤j1<j2≤n

η
(
λ

(n)
j1
, λ

(n)
j2

)}
=

∫
C2

η(λ1, λ2)R2(λ1, λ2)dλ̄1dλ1dλ̄2dλ2,

where the function η : C2 → C is bounded, continuous and symmetric in its arguments. Using
the logarithmic potential, R2 can be represented via ratios of the determinants of Mn with
the most singular term of the form

ε0∫
0

ε0∫
0

∂2

∂δ1∂δ2
E

{
2∏
j=1

det ((Mn − zj)(Mn − zj)∗ + δj)

det ((Mn − zj)(Mn − zj)∗ + εj)

}∣∣∣∣∣
δ=ε

dε1dε2 (1.3)

The integral representation for (1.3) obtained by SUSY will contain both commuting and
anti-commuting variables. Such type integrals are rather difficult to analyse. That is why
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one would investigate a more simple but similar integral to shed light on the situation. This
integral arises from the study of the correlation functions of the characteristic polynomials.
Moreover, the correlation functions of the characteristic polynomials are of independent in-
terest. They were studied for many ensembles of Hermitian and real symmetric matrices,
for instance [6], [7], [35], [36], [33] etc. The other result on the asymptotic behavior of the
correlation functions of the characteristic polynomials of non-Hermitian matrices of the form
H + iΓ, where H is from GUE and Γ is a fixed matrix of rank M , was obtained in [14]. The
kernel computed there, in the limit of rankM →∞ of the perturbation Γ (taken after matrix
size n → ∞) after appropriate rescaling approaches the form (1.9). It was demonstrated in
[13, Sec. 2.2].

Let us introduce the mth correlation function of the characteristic polynomials

fm(Z) = E

{
m∏
j=1

det (Mn − zj) (Mn − zj)∗
}
, (1.4)

where
Z = diag{z1, . . . , zm} (1.5)

and z1, . . . , zm are complex parameters which may depend on n. We are interested in the
asymptotic behavior of (1.4), as n→∞, for

zj = z0 +
ζj√
n
, j = 1, 2, . . . ,m, (1.6)

where z0, ζ1, . . . , ζm are n-independent complex numbers, and z0 is in the bulk of the
spectrum, i.e. |z0| < 1. For GinUE the value of (1.4) is known. In [2] Akemann and Vernizzi
showed that

E

{
m∏
j=1

det
(
X − z(1)

j

)(
X − z(2)

j

)∗}
=

(
n+m−1∏
l=n

l!

)
det(Kn(z

(1)
j , z̄

(2)
k ))mj,k=1

4(Z(1))4((Z(2))∗)
, (1.7)

where

Kn(z, w) =

n+m−1∑
l=0

(zw̄)l

l!
.

and 4(Z(1)) (resp. 4((Z(2))∗)) is a Vandermonde determinant of z(1)
1 , . . . , z(1)

m (resp. z̄(2)
1 ,

. . . , z̄(2)
m ). Putting z(1)

j = z
(2)
j =

√
nzj , zj of the form (1.6), one deduces from (1.7) that

lim
n→∞

n−
m2−m

2
fm(Z)

f1(z1) · · · f1(zm)
=

det(K(ζj , ζk))
m
j,k=1

|4(Z)|2
, (1.8)

where Z = diag{ζ1, . . . , ζm} and

K (z, w) = e−|z|
2/2−|w|2/2+zw̄. (1.9)

The other result on the characteristic polynomials of GinUE matrices was obtained by
Webb and Wong in [41]. They showed that for any complex γ with <γ > −2

E {|det(Mn − z0)|γ} = n
γ2

8 e
γ
2
n(|z0|2−1) (2π)

γ
4

G(1 + γ
2 )

(1 + o(1)), (1.10)

where G is the Barnes G-function.
In this article the general case of arbitrary distribution, satisfying (1.2), is considered.

The main result of the paper is
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Theorem 1. Let an ensemble of non-Hermitian random matrices Mn be defined by (1.1)
and (1.2). Let also the first 2m absolute moments of the common distribution of entries of
Mn be finite and zj, j = 1, . . . ,m, have the form (1.6). Then

(i) the mth correlation function of the characteristic polynomials (1.4) satisfies the asymp-
totic relation

lim
n→∞

n−
m2−m

2
fm(Z)

f1(z1) · · · f1(zm)
= C(i)

m,z0e
m2−m

2 (1−|z0|2)
2
κ2,2

det(K(ζj , ζk))
m
j,k=1

|4(Z)|2
,

where C(i)
m,z0 is some constant, which does not depend on the common distribution of

entries and on ζ1, . . . , ζm; κ2,2 = E{|x11|4} − 2 and K (z, w) is defined in (1.9);

(ii) in particular case ζ1 = · · · = ζm = 0 we have

E
{
|det(Mn − z0)|2m

}
= C(ii)

m,z0e
m2−m

2 (1−|z0|2)
2
κ2,2n

m2

2 emn(|z0|2−1)(1 + o(1)), (1.11)

where C(ii)
m,z0 is some constant, which does not depend on the common distribution of

entries.

Remark 1. Going through the proof of Theorem 1 one can determine constants C(i)
m,z0 and

C
(ii)
m,z0 . Their values are

C(i)
m,z0 = 1, C(ii)

m,z0 = (2π)m/2

(
m−1∏
j=1

j!

)−1

.

Let us point out that κ2,2 = 0 in Gaussian case, and the result of Theorem 1 is in
full agreement with the results for GinUE (cf. (1.8), (1.10)). Theorem also shows that the
asymptotics of fm1 is similar to the asymptotics of the m-point spectral correlation function
(see [39]).

The paper is organized as follows. Section 2 is devoted to the derivation of the suitable
integral representation for fm by using the SUSY approach. In Section 3 we apply the steepest
descent method to the obtained integral representation and find out the asymptotic behavior
of fm. In order to compute it, the Harish-Chandra/Itsykson–Zuber formula is used. For the
reader convenience both sections are divided into two parts treating the Gaussian and general
cases respectively.

Acknowledgement. The author is grateful to Prof. M. Shcherbina for the statement of
the problem and fruitful discussions.

1.1 Notations

Through out the article lower-case letters denote scalars, bold lower-case letters denote vectors,
upper-case letters denote matrices and bold upper-case letters denote sets of matrices. We
use the same letter for a matrix, for its columns and for its entries. Table 1 shows an exact
correspondence. Besides, for any matrix A we denote by (A)j its j-th column and by (A)kj
its entry in the k-th row and in the j-th column.

The term “Grassmann variable” is a synonym for “anti-commuting variable”. The variables
of integration φ, ϕ, θ, ϑ, ρ, ξ, τ and ν are Grassmann variables, all the other variables of

1Here and below we omit Z only if Z = diag{z1, . . . , zm}.
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Set of matrices Matrix Column Entry
Q Qp,s q

(p,s)
αβ

Ξ Ξp,s ξ
(p,s)
αβ

Φ φj φkj
Θ θj θkj

Yk,p,s y
(k,p,s)
αβ

U ukj
V vkj

Table 1: Notation correspondence

integration unspecified by an integration domain are either complex or real. We split all the
generators of Grassmann algebra into two equal sets and consider the generators from the
second set as “conjugates” of that from the first set. I.e., for Grassmann variable υ we use υ∗

to denote its “conjugate”. Furthermore, if Υ = (υjk) means a matrix of Grassmann variables
then Υ+ is a matrix (υ∗kj). d-dimensional vectors are identified with d× 1 matrices.

Integrals without limits denote either integration over Grassmann variables or integration
over the whole space Cd or Rd. Let also dt∗dt (t = (t1, . . . , td)

T ∈ Cd) denote the measure
d∏
j=1

dt̄jdtj on the space Cd. Similarly, for vectors with anti-commuting entries dτ+dτ =

d∏
j=1

dτ∗j dτj . Note that the space of matrices is a linear space over C. Thus the same notations

are used for them as well.
Through out the article U(m) is a group of unitary m×m matrices. In order to simplify

the notation we sometimes write Qj instead of Qj,j and q
(j)
αβ instead of q(j,j)

αβ . In addition, C,
C1 denote various n-independent constants which can be different in different formulas.

2 Integral representation for fm

In this section we obtain a convenient integral representation for the correlation function of
characteristic polynomials fm defined by (1.4).

Proposition 1. Let an ensemble Mn be defined by (1.1) and (1.2). Then the mth correla-
tion function of the characteristic polynomials fm defined by (1.4) can be represented in the
following form

fm =
(n
π

)cm ∫
g(Q)e(n−cm)f(Q)dQ, (2.1)

where cm = 22m−1, Q = (Qp,s)
m
p,s=1 with even p + s, Qp,s is a complex

(
m
p

)
×
(
m
s

)
matrix,
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dQ =
∏

p+s is even
0≤p,s≤m

dQ∗p,sdQp,s and

f(Q) = −
∑

p+s is even
0≤p,s≤m

trQ∗p,sQp,s + log h(Q); (2.2)

g(Q) = (h(Q)cm + n−1/2pa(Q)) exp

{
− cm

∑
p+s is even
0≤p,s≤m

trQ∗p,sQp,s

}
;

h(Q) = detA+ n−1/2h̃(Q2) + n−1pc(Q̂); (2.3)

A = A(Q1) =

(
−Z Q1

−Q∗1 −Z∗
)

(2.4)

with pa(Q), pc(Q̂) and h̃(Q2) being certain polynomials specified in the proof below, and Q̂
containing all Qp,s except Q1.

Remark 2. Let Q1 = UΛV ∗ be the singular value decomposition of the matrix Q1, i.e. Λ =
diag{λj}mj=1, λj ≥ 0, U, V ∈ U(m). In order to perform asymptotic analysis let us change the

variables Q1 = UΛV ∗ in (2.1). Since the Jacobian is 2mπm
2

(
∏m−1
j=1 j!)

242(Λ2)
m∏
j=1

λj (see e.g. [24])

we obtain

fm = Cncm
∫
D

42(Λ2)
m∏
j=1

λj

[
g0(Λ, Q̂) +

1√
n
gr(UΛV ∗, Q̂)

]

× exp

{
(n− cm)

[
f0(Λ, Q̂) +

1√
n
fr(UΛV ∗, Q̂)

]}
dµ(U)dµ(V )dΛdQ̂,

(2.5)

where D = {(Λ, U, V, Q̂) | λj ≥ 0, j = 1, . . . ,m, U, V ∈ U(m)}, µ is a Haar measure,

dΛ =
m∏
j=1

dλj and

f0(Q) = −
∑

p+s is even
0≤p,s≤m

trQ∗p,sQp,s + log h0(Q1); (2.6)

g0(Q) = h0(Q1)cm exp

{
− cm

∑
p+s is even
0≤p,s≤m

trQ∗p,sQp,s

}
= ecmf0(Q);

h0(Q1) = det

(
A+

1√
n

(
Z 0
0 Z∗

))
=

m∏
j=1

(|z0|2 + λ2
j ); (2.7)

fr(Q) =
√
n(f(Q)− f0(Q)); (2.8)

gr(Q) =
√
n(g(Q)− g0(Q)).

Notice that f0(UΛV ∗, Q̂) = f0(Λ, Q̂) and the same for g0.

Remark 3. In the special case m = 1 we have

f1(z) =
n

π

∫
exp

{
n(− |q|2 + log(|z|2 + |q|2))

}
dq̄dq.
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Changing variables to polar coordinates and performing a simple Laplace integration, we
obtain

f1(z) = 2n

+∞∫
0

r exp
{
n(−r2 + log(|z|2 + r2))

}
dr =

√
2πn en(|z|2−1)(1 + o(1)). (2.9)

Remark 4. In the Gaussian case the representations (2.1) and (2.5) become much more simple
and have the form

fm =
(n
π

)m2 ∫
enf(Q1)dQ∗1dQ1

= Cnm
2

∫
Rm+

∫
U(m)

∫
U(m)

42(Λ2)

m∏
j=1

λj × enf(UΛV ∗)dµ(U)dµ(V )dΛ,
(2.10)

where
f(Q1) = − trQ∗1Q1 + log detA. (2.11)

2.1 Proof of Proposition 1

The proof is strongly relied on the SUSY techniques. A reader who is not familiar with Grass-
mann variables can find all the necessary facts in [10] or [11]. For more serious introduction
to SUSY see [3].

The key formulas of the subsection are well-known Gaussian integration formula∫
Cn

exp {−t∗Bt− t∗h2 − h∗1t} dt∗dt = πndet−1B exp{h∗1B−1h2}, (2.12)

valid for any positive definite matrix B and even Grassmann variables (i.e. sums of products
of even number of Grassmann variables) h1, h2, and its Grassmann analog∫

exp
{
−τ+Bτ − τ+υ2 − υ+

1 τ
}
dτ+dτ = detB exp{υ+

1 B
−1υ2} (2.13)

valid for arbitrary complex matrix B and odd Grassmann variables (i.e. sums of products of
odd number of Grassmann variables) υ+

1 , υ2. Rewrite the expression (1.4) for fm using (2.13)
and (1.1)

fm = E

{∫
exp

{
−

m∑
j=1

φ+
j

(
1√
n
X − zj

)
φj −

m∑
j=1

θ+
j

(
1√
n
X − zj

)∗
θj

}
dΦdΘ

}
,

where φj , θj , j = 1, . . . ,m are n-dimensional vectors with components φkj and θkj respec-

tively, dΦ =
m∏
j=1

dφ+
j dφj and dΘ =

m∏
j=1

dθ+
j dθj . The terms in the exponent can be rearranged
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as following

−
m∑
j=1

φ+
j Xφj = − tr Φ+XΦ = tr ΦΦ+X =

n∑
k,l=1

(ΦΦ+)lkxkl,

−
m∑
j=1

θ+
j X

∗θj = − tr Θ+X∗Θ = tr ΘΘ+X∗ =

n∑
k,l=1

(ΘΘ+)klx̄kl,

m∑
j=1

φ+
j zjφj =

m∑
j=1

n∑
k=1

φ∗kjzjφkj =
n∑
k=1

m∑
j=1

φ∗kjzjφkj =
n∑
k=1

ϕ+
k Zϕk,

m∑
j=1

θ+
j z̄jθj =

m∑
j=1

n∑
k=1

θ∗kj z̄jθkj =
n∑
k=1

m∑
j=1

θ∗kj z̄jθkj =
n∑
k=1

ϑ+
k Z
∗ϑk,

where Θ and Φ are matrices composed of columns θ1, . . . ,θm and φ1, . . . ,φm respectively,
ϕk = (ΦT )k, ϑk = (ΘT )k, Z is defined in (1.5). Hence

fm = E

{∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

+
1√
n

n∑
k,l=1

(ΦΦ+)lkxkl +
1√
n

n∑
k,l=1

(ΘΘ+)klx̄kl

}
dΦdΘ

}
. (2.14)

To simplify the reading, the remaining steps are first explained in the case when the entries
of X are Gaussian.

2.1.1 Gaussian case

Taking the expectation in (2.14) we get

fm =

∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk +

n∑
k,l=1

1

n
(ΦΦ+)lk(ΘΘ+)kl

}
dΦdΘ.

Notice that
n∑

k,l=1

(ΦΦ+)lk(ΘΘ+)kl = tr ΦΦ+ΘΘ+ = − tr ΘT (ΦT )+ΦT (ΘT )+.

Then the Hubbard–Stratonovich transformation is applied. The transformation is an appli-
cation of (2.12) in the reverse direction. It yields

fm =
(n
π

)m2 ∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk + tr ΘT (ΦT )+Q1

− trQ∗1ΦT (ΘT )+ − n trQ∗1Q1

}
dΦdΘdQ∗1dQ1,

(2.15)

where Q1 is a m×m matrix. Transforming the terms

tr ΘT (ΦT )+Q1 = − tr(ΦT )+Q1ΘT = −
n∑
k=1

ϕ+
k Q1ϑk,

trQ∗1ΦT (ΘT )+ = − tr(ΘT )+Q∗1ΦT = −
n∑
k=1

ϑ+
k Q
∗
1ϕk,
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one can rewrite (2.15) in the form

fm =
(n
π

)m2 ∫
dQ∗1dQ1e

−n trQ∗1Q1

n∏
k=1

∫
e−ρ

+
k Aρkdϕ+

k dϕkdϑ
+
k dϑk,

where A is defined in (2.4) and

ρk =

(
ϕk
ϑk

)
. (2.16)

Finally, integration via (2.13) leads us to (2.10).

2.1.2 General case

In order to treat the general case let us introduce a notation for a kind of “Laplace–Fourier
transform”

ψ (t1, t2) := E
{
et1x11+t2x̄11

}
.

Then the expectation in (2.14) can be written in the following form

fm =

∫ n∏
k,l=1

ψ

(
1√
n

(ΦΦ+)lk,
1√
n

(ΘΘ+)kl

)

× exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

}
dΦdΘ

=

∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

+
n∑

k,l=1

logψ

(
1√
n

(ΦΦ+)lk,
1√
n

(ΘΘ+)kl

)}
dΦdΘ.

Expansion of log Φ into series gives us

fm =

∫
exp

{
n∑
k=1

ϕ+
k Zϕk +

n∑
k=1

ϑ+
k Z
∗ϑk

+

n∑
k,l=1

m∑
p,s=0

κp,s
p!s!

1

n(p+s)/2

(
(ΦΦ+)lk

)p (
(ΘΘ+)kl

)s}
dΦdΘ, (2.17)

with

κp,s =
∂p+s

∂pt1∂st2
logψ (t1, t2)

∣∣∣∣
t1=t2=0

.

In particular,

κ0,0 = 0;

κ1,0 = κ0,1 = E{x11} = 0;

κ2,0 = κ0,2 = E{x2
11} −E2{x11} = 0;

κ1,1 = E{|x11|2} − |E{x11}|2 = 1.

(2.18)
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Let us transform the terms in the exponent again

n∑
k,l=1

(
(ΦΦ+)lk

)p (
(ΘΘ+)kl

)s
=

n∑
k,l=1

(
m∑
j=1

φljφ
∗
kj

)p( m∑
j=1

θkjθ
∗
lj

)s
= p!s!

n∑
k,l=1

∑
α∈Im,p
β∈Im,s

p∏
q=1

φlαqφ
∗
kαq

s∏
r=1

θkβrθ
∗
lβr

= (−1)p
2
p!s!

n∑
k,l=1

∑
α∈Im,p
β∈Im,s

1∏
r=s

θkβr

1∏
q=p

φ∗kαq

p∏
q=1

φlαq

s∏
r=1

θ∗lβr

= p!s!
∑

α∈Im,p
β∈Im,s

(
n∑
k=1

(−1)p
1∏
r=s

θkβr

1∏
q=p

φ∗kαq

)(
n∑
k=1

p∏
q=1

φkαq

s∏
r=1

θ∗kβr

)
, (2.19)

where
Im,p′ = {α ∈ Zp

′ | 1 ≤ α1 < . . . < αp′ ≤ m} (2.20)

At this point the Hubbard–Stratonovich transformation is applied. As it was mentioned
before, the transformation is an employment of (2.12) or (2.13) in the reverse direction. It
yields for even p+ s

exp

{
κp,sn

−(p+s)/2

(
n∑
k=1

(−1)p
1∏
r=s

θkβr

1∏
q=p

φ∗kαq

)(
n∑
k=1

p∏
q=1

φkαq

s∏
r=1

θ∗kβr

)}

=
n

π

∫
exp

{
− n−

p+s−2
4

n∑
k=1

ỹ
(k,p,s)
βα q

(p,s)
αβ − n

− p+s−2
4

n∑
k=1

q̄
(p,s)
αβ y

(k,p,s)
αβ − n

∣∣∣q(p,s)
αβ

∣∣∣2}
× dq̄(p,s)

αβ dq
(p,s)
αβ , (2.21)

where

ỹ
(k,p,s)
βα =

√
κp,s(−1)p

1∏
r=s

θkβr

1∏
q=p

φ∗kαq ;

y
(k,p,s)
αβ =

√
κp,s

p∏
q=1

φkαq

s∏
r=1

θ∗kβr .

(2.22)

Here and below we take a branch of the square root such that its argument is in [0, π).
Similarly, for odd p+ s we have

exp

{
κp,sn

−(p+s)/2

(
n∑
k=1

(−1)p
s∏
r=1

θkβr

p∏
q=1

φ∗kαq

)(
n∑
k=1

p∏
q=1

φkαq

s∏
r=1

θ∗kβr

)}

=

∫
exp

{
− n−

p+s
4

n∑
k=1

ỹ
(k,p,s)
βα ξ

(p,s)
αβ − n−

p+s
4

n∑
k=1

(
ξ

(p,s)
αβ

)∗
y

(k,p,s)
αβ

−
(
ξ

(p,s)
αβ

)∗
ξ

(p,s)
αβ

}
d
(
ξ

(p,s)
αβ

)∗
dξ

(p,s)
αβ . (2.23)
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Then the combination of (2.17), (2.19), (2.21) and (2.23) gives us

fm =
(n
π

)cm ∫ n∏
k=1

jk
∏

p+s is odd
0≤p,s≤m

e− tr Ξ+
p,sΞp,sdΞ+

p,sdΞp,s
∏

p+s is even
0≤p,s≤m

e−n trQ∗p,sQp,sdQ∗p,sdQp,s (2.24)

where

jk =

∫
exp

{
bk,2 + n−1/2bk,4 + n−3/4p(1)

a (Ξ,Φ,Θ) + n−1p(1)
c (Q̂,Φ,Θ)

}
× dϕ+

k dϕkdϑ
+
k dϑk,

(2.25)

bk,2 = −
(

tr Ỹk,1,1Q1,1 + trQ∗1,1Yk,1,1

)
+ϕ+

k Zϕk + ϑ+
k Z
∗ϑk,

bk,4 = −
∑
p+s=4

(
tr Ỹk,p,sQp,s + trQ∗p,sYk,p,s

)
, (2.26)

p(1)
a (Ξ,Φ,Θ) = −

m∑
j=2

n−(j−2)/2
∑

p+s=2j−1

(
tr Ỹk,p,sΞp,s + tr Ξ+

p,sYk,p,s

)
,

p(1)
c (Q̂,Φ,Θ) = −

m∑
j=3

n−(j−3)/2
∑

p+s=2j

(
tr Ỹk,p,sQp,s + trQ∗p,sYk,p,s

)
.

In the formulas above Ξp,s, Qp,s, Ỹk,p,s and Yk,p,s are matrices whose entries are ξ(p,s)
αβ , q(p,s)

αβ ,

ỹ
(k,p,s)
βα and y

(k,p,s)
αβ respectively. The rows and columns are indexed by elements of the set

Im,p for corresponding p (or s) in the lexicographical order. Note also that p(1)
a and p

(1)
c are

the first degree homogeneous polynomials of the entries of Ξ and Q̂ respectively, where Q̂
contains all the Qp,s except Q1. One more thing we need is that all the monomials of p(1)

a

have odd degree w.r.t. ϕk and ϑk, and all the monomials of p(1)
c have even degree w.r.t. ϕk

and ϑk.
Fortunately, the integral in (2.24) over Φ and Θ factorizes. Therefore the integration can

be performed over ϕk and ϑk separately for every k. Lemma 1 provides a corresponding
result.

Lemma 1. Let jk be defined by (2.25). Then

jk = detA+ n−1/2h̃(Q2) + n−1pc(Q̂) + n−3/2p(2)
a (Ξ,Q), (2.27)

where A is defined in (2.4),

h̃(Q2) = −
∫ (

tr Ỹk,2,2Q2 + trQ∗2Yk,2,2

)
ebk,2dϕ+

k dϕkdϑ
+
k dϑk, (2.28)

pc(Q̂) and p
(2)
a (Ξ,Q) are polynomials such that

(i) pc(0) = 0;

(ii) every monomial of p(2)
a has at least second degree w.r.t. Ξ.

Proof. The integral jk is computed by the expansion of the exponent into series. We start
with

jk =

∫ (
1 +

∑
1≤k≤4m/3

n−3k/4(p(1)
a (Ξ,Φ,Θ))k

)
ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)

× dϕ+
k dϕkdϑ

+
k dϑk, (2.29)
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where the terms of degree higher than 4m w.r.t. ϕk and ϑk vanish, because the square of any
anti-commuting variable is zero. The monomials of odd degree w.r.t. ϕk and ϑk also vanish
after integration. Indeed, for every odd degree homogeneous polynomial p̃ the expansion of
p̃ (ϕk,ϑk) e

bk,2+n−1/2bk,4+n−1pc(Q̂,Φ,Θ) into series gives us only odd degree terms. Whereas the
number of Grassmann variables is even, there are no top degree monomials and the integral
is zero. Thus (2.29) simplifies to

jk =

∫ (
1 + n−3/2p(3)

a (Ξ,Φ,Θ)
)
ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)

× dϕ+
k dϕkdϑ

+
k dϑk,

(2.30)

where p(3)
a (Ξ,Φ,Θ) is a polynomial and its every monomial has degree at least 2 w.r.t. Ξ and

at least 2 w.r.t. ϕk and ϑk. Note that∫
p(3)
a (Ξ,Φ,Θ)ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)dϕ+

k dϕkdϑ
+
k dϑk = p(2)

a (Ξ,Q), (2.31)

where p(2)
a (Ξ,Q) satisfies condition (ii). Substitution of (2.31) into (2.30) yields

jk =

∫
ebk,2+n−1/2bk,4+n−1p

(1)
c (Q̂,Φ,Θ)dϕ+

k dϕkdϑ
+
k dϑk + n−3/2p(2)

a (Ξ,Q).

Further expansion implies

jk =

∫ (
1 + n−1/2bk,4 + n−1p(2)

c (Q̂,Φ,Θ)
)
ebk,2dϕ+

k dϕkdϑ
+
k dϑk

+ n−3/2p(2)
a (Ξ,Q),

where p
(2)
c (Q̂,Φ,Θ) is again a polynomial such that p(2)

c (0,Φ,Θ) = 0. Similarly to above we
obtain

jk =

∫ (
1 + n−1/2bk,4

)
ebk,2dϕ+

k dϕkdϑ
+
k dϑk

+ n−1pc(Q̂) + n−3/2p(2)
a (Ξ,Q),

where pc(Q̂) satisfies condition (i).
Let us consider the expression (2.26) for bk,4 in more detail. Every term in (2.26) with

(p, s) 6= (2, 2) has different numbers of “non-conjugate” Grassmann variables (without “+”
superscript) and “conjugates” (with “+” superscript). But every term of bk,2 has equal number
of “non-conjugate” and “conjugate” Grassmann variables. The same is true for the expansion
of ebk,2 and for top degree monomial of ϕk and ϑk. Hence for (p, s) 6= (2, 2), p+ s = 4∫ (

tr Ỹk,p,sQp,s + trQ∗p,sYk,p,s

)
ebk,2dϕ+

k dϕkdϑ
+
k dϑk = 0.

Therefore

jk =

∫ (
1− n−1/2

(
tr Ỹk,2,2Q2 + trQ∗2Yk,2,2

))
ebk,2dϕ+

k dϕkdϑ
+
k dϑk

+ n−1pc(Q̂) + n−3/2p(2)
a (Ξ,Q).

(2.32)

Recalling the definition of y(k,p,s)
αβ (2.22) and the values of κp,s (2.18), one can render bk,2

in the form
bk,2 = −ρ+

k Aρk, (2.33)

where A is defined in (2.4) and ρk is defined in (2.16). Then (2.32) and (2.13) imply the
assertion of the lemma.

12



A substitution of (2.27) into (2.24) gives us

fm =
(n
π

)cm ∫
(h(Q) + n−3/2p(2)

a (Ξ,Q))n
∏

p+s is odd
0≤p,s≤m

e− tr Ξ+
p,sΞp,sdΞ+

p,sdΞp,s

×
∏

p+s is even
0≤p,s≤m

e−n trQ∗p,sQp,sdQ∗p,sdQp,s,

where h(Q) is defined in (2.3). Further

(h(Q) + n−3/2p(2)
a (Ξ,Q))n =

cm∑
k=0

(
n

k

)
n−3k/2h(Q)n−k(p(2)

a (Ξ,Q))k

because there are 2cm anti-commuting variables and every monomial of p(2)
a has at least second

degree w.r.t. Ξ. Hence,

fm =
(n
π

)cm ∫
(h(Q)cm + n−1/2p(3)

a (Ξ,Q))
∏

p+s is odd
0≤p,s≤m

e− tr Ξ+
p,sΞp,sdΞ+

p,sdΞp,s

× enf(Q)−cm log h(Q)dQ,

(2.34)

where p
(3)
a is a polynomial and f(Q) is defined in (2.2). Taking into account (2.13) and the

definition of an integral over anti-commuting variables, one can perform the integration over
Ξ in (2.34) and obtain (2.1).

3 Asymptotic analysis

The goal of the section is to investigate the asymptotic behavior of the integral representa-
tion (2.5). To this end, the steepest descent method is applied. As usual, the hardest step is
to choose stationary points of f(Q) and a N -dimensional (real) manifold M∗ ⊂ CN such that
for any chosen stationary point Q∗ ∈M∗

<f(Q) < <f(Q∗), ∀Q ∈M∗, Q is not chosen.

Note that N is equal to the number of real variables of the integration, i.e. in our case
N = 22m.

The present proof proceeds a slightly different but rather standard scheme for the case
when function f(Q) has the form

f(Q) = f0(Q) + n−1/2fr(Q),

where f0(Q) does not depend on n, whereas fr(Q) may depend on n. We choose stationary
points of f0(Q) of the form Q1 = Uλ0V

∗, Q̂ = 0, where λ0 is a fixed real number and U and
V vary in U(m). Then the steepest descent method is applied to the integral over Λ and Q̂.
In the process U and V are being considered as parameters and all the estimates are uniform
in U and V . As soon as the domain of integration is restricted by a small neighborhood we
recall about the integration over U and V . After several changes of the variables the integral
is finally computed.

We start with the analysis of f0.
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Lemma 2. Let the function f0 : R22m → [−∞,+∞) be defined by (2.6). Then f0(Λ, Q̂)
attains its global maximum value only at the point

λ1 = · · · = λm = λ0, Q̂ = 0,

where λ0 =
√

1− |z0|2. Moreover, the matrix of second order derivatives of f0 w.r.t. Λ and
Q̂ at this point is negative definite.

Proof. It is evident from (2.6) and (2.7) that f0(Λ, Q̂) has the form

f0(Λ, Q̂) =
m∑
j=1

f∗(λj)−
∑

(p,s) 6=(1,1)

trQ∗p,sQp,s, (3.1)

where
f∗(λ) = −λ2 + log(|z0|2 + λ2).

Since f ′∗(λ) = 0 iff λ = λ0 and lim
λ→∞

f∗(λ) = −∞, f∗(λ) attains its global maximum value

only at λ = λ0. Furthermore, f ′′∗ (λ0) = −4λ2
0. These facts and (3.1) immediately imply the

assertion of the lemma.

As in the previous section we consider first the Gaussian case and then the general case.

3.1 Gaussian case

Now we proceed to the integral estimates. In a standard way the integration domain in (2.10)
can be restricted as follows

fm = Cnm
2

∫
Σr

42(Λ2)
m∏
j=1

λj × enf(UΛV ∗)dµ(U)dµ(V )dΛ +O(e−nr/2),

where
Σr = {(Λ, U, V ) | ‖Λ‖ ≤ r} .

The next step is to restrict the integration domain by

Ωn =

{
(Λ, U, V ) | ‖Λ− Λ0‖ ≤

log n√
n

}
, (3.2)

where Λ0 = λ0I, I is a unit matrix. To this end we need the estimate of <f given by the
following lemmas.

Lemma 3. Let Λ̃ be a m×m diagonal matrix such that ‖Λ̃‖ ≤ log n. Then uniformly in U
and V

f(U(Λ0 + n−1/2Λ̃)V ∗) = −mλ2
0 + n−1/2 tr(z̄0Z + z0Z∗) + n−1 trZUZ∗V

− n−1 tr(2λ0Λ̃ + z̄0ZU + z0Z∗V )2/2 +O
(
n−3/2 log3 n

) (3.3)

where
ZB = B∗ZB. (3.4)
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Proof. If Q1 = U(Λ0 + n−1/2Λ̃)V ∗ then A has the form

A =

(
U 0
0 V

)(
A0 +

1√
n
A1

)(
U∗ 0
0 V ∗

)
,

where

A0 =

(
−Z0 Λ0

−Λ0 −Z∗0

)
, A1 =

(
−ZU Λ̃

−Λ̃ −Z∗V

)
. (3.5)

Taking into account that

detA0 =

[
det

(
−z0 λ0

−λ0 −z̄0

)]m
= 1,

one gets

log detA = log detA−1
0 A = tr log(1 + n−1/2A−1

0 A1)

=
1√
n

trA−1
0 A1 −

1

2n
tr(A−1

0 A1)2 +O

(
log3 n√
n3

) (3.6)

uniformly in U and V . Moreover,

A−1
0 A1 =

(
z̄0ZU + λ0Λ̃ −z̄0Λ̃ + λ0Z∗V
−λ0ZU + z0Λ̃ λ0Λ̃ + z0Z∗V

)
. (3.7)

Combining (3.6), (3.7) and (2.11), we get

f(U(Λ0 + n−1/2Λ̃)V ∗) = tr
[
− Λ2

0 − 2n−1/2λ0Λ̃− n−1Λ̃2 + n−1/2(2λ0Λ̃ + z̄0ZU + z0Z∗V )

− n−1
{

(λ2
0 − |z0|2)Λ̃2 + 2z̄0λ0ZU Λ̃ + 2z0λ0Z∗V Λ̃

+
1

2
(z̄0ZU + z0Z∗V )2 −ZUZ∗V

}]
+O

(
n−3/2 log3 n

)
.

The last expansion yields (3.3).

Lemma 4. Let f̃(Q1) = f(Q1)− f(Λ0). Then for sufficiently large n

max
logn√
n
≤‖Λ−Λ0‖≤r

<f̃(UΛV ∗) ≤ −C log2 n

n

uniformly in U and V .

Proof. First let us check that the first and the second derivatives of fr are bounded in the
δ-neighborhood of Λ0, where fr is defined in (2.8) and δ is n-independent. Indeed, since h
and h0 are polynomials and h⇒ h0 on compacts∣∣∣∣ 1√

n

∂<fr
∂λj

∣∣∣∣ ≤ ∣∣∣∣ 1√
n

∂fr
∂λj

∣∣∣∣ =

∣∣∣∣∂(f − f0)

∂λj

∣∣∣∣ =

∣∣∣∣∂(log h− log h0)

∂λj

∣∣∣∣ ≤ ∣∣∣∣ 1

h0
· ∂h0

∂λj
− 1

h
· ∂h
∂λj

∣∣∣∣ ≤ C√
n
.

For every diagonal matrix E = diag{ej} let v(E) denote a vector with components ej . Then
for every diagonal matrix E of unit norm and for logn√

n
≤ t ≤ δ we have

d

dt
<f̃(U(Λ0 + tE)V ∗) = 〈∇Λf0(U(Λ0 + tE)V ∗), v(E)〉

+ n−1/2〈∇Λ<fr(U(Λ0 + tE)V ∗), v(E)〉
= 〈∇Λf0(Λ0 + tE), v(E)〉+O(n−1/2),
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where 〈·, ·〉 is a standard scalar product. Expanding the scalar product by the Taylor formula
and considering that ∇Λf0(Λ0) = 0, we obtain

d

dt
<f̃(U(Λ0 + tE)V ∗) = t〈f ′′0 (Λ0)v(E), v(E)〉+ r1 +O(n−1/2),

where f ′′0 is a matrix of second order derivatives of f0 w.r.t. Λ and |r1| ≤ Ct2. f ′′0 (Λ0) is
negative definite according to Lemma 2. Hence d

dt<f̃(U(Λ0 + tE)V ∗) is negative and

max
logn√
n
≤‖Λ−Λ0‖≤δ

<f̃(UΛV ∗) = max
‖Λ−Λ0‖= logn√

n

<f̃(UΛV ∗) ≤ f(UΛ0V
∗)− C log2 n

n
− f(Λ0). (3.8)

Notice that fr is bounded from above uniformly in n. This fact and Lemma 2 imply that δ
in (3.8) can be replaced by r

max
logn√
n
≤‖Λ−Λ0‖≤r

<f̃(UΛV ∗) ≤ f(UΛ0V
∗)− f(Λ0)− C log2 n

n
.

It remains to deduce from Lemma 3 that f(UΛ0V
∗)−f(Λ0) = O(n−1) uniformly in U and V .

Lemma 4 yields

fm = Cnm
2
enf(Λ0)

(∫
Ωn

42(Λ2)

m∏
j=1

λj × enf̃(UΛV ∗)dµ(U)dµ(V )dΛ +O(e−C1 log2 n)

)
,

where Ωn is defined in (3.2). Changing the variables Λ = Λ0+ 1√
n

Λ̃ and expanding f according
to Lemma 3 we obtain

fm = Ckn

∫
√
nΩn

42(Λ̃) exp
{
− tr(2λ0Λ̃ + z̄0ZU + z0Z∗V )2/2 + trZUZ∗V

}
× dµ(U)dµ(V )dΛ̃(1 + o(1)),

(3.9)

where
kn = nm

2/2e−mnλ
2
0+
√
n tr(z̄0Z+z0Z∗). (3.10)

Let us change the variables V = WU . Taking into account that the Haar measure is invariant
w.r.t. shifts we get

fm = Ckn

∫
Rm

∫
U(m)

∫
U(m)

42(Λ̃) exp
{
− tr(2λ0Λ̃ + U∗(z̄0Z + z0Z∗W )U)2/2 + trZW ∗Z∗W

}
× dµ(U)dµ(W )dΛ̃(1 + o(1))

= Ckn

∫
Rm

∫
U(m)

∫
U(m)

42(Λ̃) exp
{
− tr(2λ0U Λ̃U∗ + (z̄0Z + z0Z∗W ))2/2 + trZW ∗Z∗W

}
× dµ(U)dµ(W )dΛ̃(1 + o(1)).

The next step is to change the variables H = U Λ̃U∗. The Jacobian is
∏m−1
j=1 j!

(2π)m(m−1)/24−2(Λ̃)

(see e.g. [24]). Thus

fm = Ckn

∫
Hm

∫
U(m)

exp
{
− tr(2λ0H + (z̄0Z + z0Z∗W ))2/2 + trZW ∗Z∗W

}
× dµ(W )dH(1 + o(1)),
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where Hm is a space of hermitian m×m matrices and

dH =

m∏
j=1

d(H)jj
∏
j<k

d<(H)jkd=(H)jk.

The Gaussian integration over H implies

fm = Ckn

∫
U(m)

exp {trZW ∗Z∗W} dµ(W )(1 + o(1)). (3.11)

If Z = 0, (3.11) immediately yields (1.11). Otherwise, for computing the integral over the
unitary group, the following Harish-Chandra/Itsykson–Zuber formula is used

Proposition 2. Let A and B be normal d× d matrices with distinct eigenvalues {aj}dj=1 and
{bj}dj=1 respectively. Then∫

U(d)

exp{z trAU∗BU}dµ(U) =

( d−1∏
j=1

j!

)
det{exp(zajbk)}dj,k=1

z(d2−d)/24(A)4(B)
,

where z is some constant, µ is a Haar measure, and 4(A) =
∏
j>k

(aj − ak).

For the proof see, e.g., [27, Appendix 5]. Applying the Harish-Chandra/Itsykson–Zuber
formula to (3.11) we obtain

fm = Ckn
det{eζj ζ̄k}mj,k=1

|4(Z)|2
(1 + o(1)),

which in combination with (2.9) yields the result of Theorem 1.

3.2 General case

In the general case the proof proceeds by the same scheme as in the Gaussian case. In
this subsection we focus on the crucial distinctions from the Gaussian case and refine the
corresponding assertions from previous subsection. Set

‖Q̂‖ =
∑

p+s is even
0≤p,s≤m

(p,s)6=(1,1)

‖Qp,s‖ .

The generalization of Lemma 3 is

Lemma 5. Let ‖Λ̃‖+
∥∥ ˆ̃Q
∥∥ ≤ log n. Then uniformly in U and V

f(U(Λ0 + n−1/2Λ̃)V ∗, n−1/2 ˆ̃Q)

= −mλ2
0 + n−1/2 tr(z̄0Z + z0Z∗)− n−1 tr(2λ0Λ̃ + z̄0ZU + z0Z∗V )2/2

+ n−1 trZUZ∗V + n−1λ2
0
√
κ2,2 tr(∧2V U∗)Q̃2 + n−1λ2

0
√
κ2,2 tr Q̃∗2(∧2UV ∗)

− n−1
∑

p+s is even
0≤p,s≤m

(p,s)6=(1,1)

tr Q̃∗p,sQ̃p,s +O
(
n−3/2 log3 n

)
,

(3.12)

where ZB is defined in (3.4) and ∧2B is the second exterior power of a linear operator B (see
[40] for definition and properties of an exterior power of a linear operator).
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Proof. Differently from the Gaussian case f has additional terms of the form trQ∗p,sQp,s and
additional term n−1/2h̃(Q2) + n−1pc(Q̂) under the logarithm (cf. (2.2) and (2.11)), where h̃
and pc are defined in the assertion of Lemma 1. The contribution of the terms trQ∗p,sQp,s to

the expansion (3.12) is evident. Furthermore, n−1pc(n
−1/2 ˆ̃Q) = O

(
n−3/2 log3 n

)
because pc

is a polynomial with zero constant term. Hence, it remains to determine the contribution of
the term n−1/2h̃(Q2).

In order to simplify notations, let us omit index k in (2.28). Thus, now ϕ and ϑ denote
vectors φk1

...
φkm

 and

 θk1
...

θkm


respectively. Then (2.28) is written as

h̃(Q2) = −
∫ (

tr Ỹ2,2Q2 + trQ∗2Y2,2

)
eb2dϕ+dϕdϑ+dϑ,

where Ỹ2,2 and Y2,2 are defined in (2.22) and b2 has the form (2.33). Therefore

n−1/2h̃(n−1/2Q̃2) = n−1h̃(Q̃2) = −
√
κ2,2

n

∫
dϕ+dϕdϑ+dϑ e−ρ

+Aρ

×
∑

α,β∈Im,2

(
θkβ1θkβ2φ

∗
kα1

φ∗kα2
q̃

(2)
αβ + ¯̃q

(2)
αβφkα1φkα2θ

∗
kβ1θ

∗
kβ2

)
, (3.13)

where ρ is defined in (2.16), Im,2 is defined in (2.20). Let us change the variables φ̃ = U∗ϕ,
φ̃+ = ϕ+U , θ̃ = V ∗ϑ, θ̃+ = ϑ+V . We have

θkβ1θkβ2φ
∗
kα1

φ∗kα2
= (V θ̃)β1(V θ̃)β2(φ̃+U∗)α1(φ̃+U∗)α2

=

m∑
γ1,γ2=1

m∑
δ1,δ2=1

vβ1γ1 θ̃kγ1vβ2γ2 θ̃kγ2 φ̃
∗
kδ1uα1δ1 φ̃

∗
kδ2uα2δ2

=
∑

γ,δ∈Im,2

(vβ1γ1vβ2γ2 − vβ1γ2vβ2γ1)θ̃kγ1 θ̃kγ2 φ̃
∗
kδ1 φ̃

∗
kδ2

× (uα1δ1uα2δ2 − uα1δ2uα2δ1)

=
∑

γ,δ∈Im,2

(∧2V )βγ θ̃kγ1 θ̃kγ2 φ̃
∗
kδ1 φ̃

∗
kδ2(∧2U∗)δα,

(3.14)

where ujk = (U)jk, vjk = (V )jk. Similarly

φkα1φkα2θ
∗
kβ1θ

∗
kβ2 =

∑
γ,δ∈Im,2

(∧2U)αγφ̃kγ1 φ̃kγ2 θ̃
∗
kδ1 θ̃

∗
kδ2(∧2V ∗)δβ. (3.15)

Besides,
ρ+Aρ = ρ̃+Ãρ̃ = ρ̃+A0ρ̃+O(n−1/2 log n), (3.16)

where A0 is defined in (3.5) and

ρ̃ =

(
φ̃

θ̃

)
, Ã =

(
U∗ 0
0 V ∗

)
A

(
U 0
0 V

)
=

(
−U∗ZU Λ
−Λ −V ∗Z∗V

)
.

18



The “differentials” change as follows

dϕ = det−1 Udφ̃,

dϕ+ = det−1 U∗dφ̃+
(3.17)

and for dϑ likewise. Eventually, substitution of (3.14)–(3.17) into (3.13) yields

n−1h̃(Q̃2) = −
√
κ2,2

n

∑
γ,δ∈Im,2

∫ (
θ̃kγ1 θ̃kγ2 φ̃

∗
kδ1 φ̃

∗
kδ2

(
(∧2U∗)Q̃2(∧2V )

)
δγ

+
(

(∧2V ∗)Q̃∗2(∧2U)
)
δγ
φ̃kγ1 φ̃kγ2 θ̃

∗
kδ1 θ̃

∗
kδ2

)

× e−ρ̃+A0ρ̃dφ̃+dφ̃dθ̃∗dθ̃ +O
(
n−3/2 log3 n

)
(3.18)

uniformly in U and V . Due to the structure of A0 the integration can be performed over φ̃kj ,
θ̃kj separately for every j. Notice that∫

τ exp
{
−ν+A′ν

}
dφ̃∗kjdφ̃kjdθ̃

∗
kjdθ̃kj = 0,

where τ is either φ̃∗kj , φ̃kj , θ̃
∗
kj or θ̃kj and

ν =

(
φ̃kj
θ̃kj

)
, A′ =

(
−z0 λ0

−λ0 −z̄0

)
.

Hence the terms with γ 6= δ in (3.18) are zeros. Furthermore, expanding the exponent into
series, one can observe that∫

θ̃kjφ̃
∗
kje
−ν+A′νdφ̃∗kjdφ̃kjdθ̃

∗
kjdθ̃kj = −

∫
φ̃kj θ̃

∗
kje
−ν+A′νdφ̃∗kjdφ̃kjdθ̃

∗
kjdθ̃kj = λ0.

It implies

n−1h̃(Q̃2) = n−1λ2
0
√
κ2,2(tr(∧2U∗)Q̃2(∧2V ) + tr(∧2V ∗)Q̃∗2(∧2U)) + o(n−1)

= n−1λ2
0
√
κ2,2(tr(∧2V U∗)Q̃2 + tr Q̃∗2(∧2UV ∗)) +O

(
n−3/2 log3 n

)
.

The above relation completes the proof of (3.12).

An analog of Lemma 4 is

Lemma 6. Let f̃(Q) = f(Q)− f(Λ0, 0). Then for sufficiently large n

max
logn√
n
≤‖Λ−Λ0‖+‖Q̂‖≤r

<f̃(UΛV ∗, Q̂) ≤ −C log2 n

n

uniformly in U and V .

19



The proof needs only cosmetic changes because of additional variables Q̂. Following the
proof in the Gaussian case one can see that (3.9) transforms into

fm = Ckn

∫
√
nΩn

42(Λ̃) exp
{
− tr(2λ0Λ̃ + z̄0ZU + z0Z∗V )2/2 + trZUZ∗V

+ λ2
0
√
κ2,2 tr(∧2V U∗)Q̃2 + λ2

0
√
κ2,2 tr Q̃∗2(∧2UV ∗)

−
∑

p+s is even
0≤p,s≤m

(p,s)6=(1,1)

tr Q̃∗p,sQ̃p,s

}
dµ(U)dµ(V )dΛ̃dQ̂(1 + o(1)),

where kn is defined in (3.10). The Gaussian integration over Q̂ yields

fm = Ckn exp

{
m2 −m

2
λ4

0κ2,2

}∫
42(Λ̃) exp

{
− tr(2λ0Λ̃ + z̄0ZU + z0Z∗V )2/2 + trZUZ∗V

}
× dµ(U)dµ(V )dΛ̃(1 + o(1)).

The last formula shows that there are no differences in further proof up to a high moments
independent factor exp

{
m2−m

2 λ4
0κ2,2

}
.
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[6] E. Brézin and S. Hikami. Characteristic polynomials of random matrices. Comm. Math.
Phys., 214:111–135, 2000.
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