
On totally geodesic unit vector fields.

Yampolsky A.

Let T1M be a unit tangent bundle of M endowed with Sasaki metric
[8]. If ξ is a unit vector field on M , then one may consider ξ as a mapping
ξ : M → T1M . The image ξ(M) is a submanifold transverse to fibers in T1M
with metric induced from T1M . Conversely, a manifold transverse to fibers
in the (unit) tangent bundle can be given as image of some (unit) vector
field on the base manifold [1]. Thus, a transverse to fibers submanifold in
T1M

n always can be locally represented by a unit vector field.
A unit vector field ξ is said to be minimal if ξ(M) is a minimal subman-

ifold in T1M . A unit vector field on S3 tangent to fibers of Hopf fibration

S3 S1

�→ S2 is a unique one with globally minimal volume [4]. This result fails
in higher dimensions. A lower volume has a vector field with one singular
point. This field is a stereographic projection inverse image of parallel vec-
tor field on En [7]. The lowest volume has the North-South vector field with
two singular points [3]. In [10] the author found the second fundamental
form of ξ(M) and presented some examples of vector fields with constant
mean curvature. This result is a key to solve a problem on totally geodesic
unit vector fields on a given Riemannian manifold. In [11] this question was
treated in a case of 2-manifolds of constant curvature and in [13] was found
an example of totally geodesic unit vector field on a surface of revolution
with non-constant but sign-preserving Gaussian curvature.

In this note we drive the differential equation in covariant derivatives on
a unit vector field such that its solution provides a totally geodesic property
for ξ(Mn)

Let ξ be a fixed unit vector field on Riemannian manifold Mn. Denote
by Aξ : TqM

n → ξ⊥q a point-wise linear operator, acting as

AξX = �∇Xξ

In case of integrable distribution ξ⊥, the operator Aξ is symmetric and
is known as Wiengarten or a shape operator for each hypersurface of the
foliation.

In general, Aξ is not symmetric, but formally preserves the Codazzi
equation. Namely, a covariant derivative of Aξ is defined by

�(∇XAξ)Y = ∇X∇Y ξ �∇∇XY ξ. (1)
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Then for the curvature operator of Mn we can write down the non-holonomic
Codazzi equation

R(X,Y )ξ = (∇Y Aξ)X � (∇XAξ)Y.

Remark, that the right hand side is, up to constant, a skew symmetric part
of covariant derivative of Aξ.

Introduce a symmetric tensor field

Hessξ(X,Y ) =
1
2
[
(∇Y Aξ)X + (∇XAξ)Y

]
, (2)

which is a symmetric part of covariant derivative of Aξ. The trace

�
n∑

i=1

Hessξ(ei, ei) := ∆ξ,

where e1, . . . en is an orthonormal frame, is known as rough Laplacian [2] of
the field ξ. Therefore, one can treat the tensor field (2) as a rough Hessian
of the field. A vector field is called harmonic, if it is a critical point of energy
functional of mapping ξ : Mn → T1M

n. Up to an additive constant, this
functional is a total bending of a unit vector field [9] and the unit vector
field is harmonic if and only if ∆ξ = �|∇ξ|2ξ, where |∇ξ|2 =

∑n
i=1 |∇eiξ|2

with respect to orthonormal frame e1, . . . en [9].
Introduce a tensor field

Hmξ(X,Y ) =
1
2
[
R(ξ,∇Xξ)Y + R(ξ,∇Y ξ)X

]
, (3)

which is a symmetric part of tensor field R(ξ,∇Xξ)Y . The trace

∆Hξ :=
n∑

i=1

Hmξ(ei, ei)

is responsible for harmonicity of mapping ξ : Mn → T1M
n. Precisely, a

harmonic unit vector field ξ defines a harmonic map ξ : Mn → T1M
n if and

only if ∆Hξ = 0 [5]. From this viewpoint, it is natural to call the tensor
field (3) as harmonicity tensor of the field ξ.

Definition 1 A unit vector field ξ on Riemannian manifold Mn is called
totally geodesic if the image of (local) imbedding ξ : Mn → T1M

n is totally
geodesic submanifold in the unit tangent bundle T1M

n with Sasaki metric.

Now we can state a basic condition under which a given unit vector field ξ
generates a totally geodesic submanifold in T1M

n.
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Proposition 1 Let Mn be Riemannian manifold and T1M
n its unit tangent

bundle with Sasaki metric. Let ξ a smooth (local) unit vector field on Mn.
The vector field ξ generates a totally geodesic submanifold ξ(Mn) ⊂ T1M

n

if and only if ξ satisfies

Hessξ(X,Y ) = AξHmξ(X,Y ) +
〈
AξX,AξY

〉
ξ

for all (local) vector fields X and Y on Mn.

Proof. The differential of mapping ξ : Mn → TMn is acting as

ξ∗X = Xh + (∇Xξ)v = Xh � (AξX)v, (4)

where ∇ means Levi-Civita connection on Mn and the lifts are considered
to points of ξ(Mn). It is well known that if ξ is a unit vector field on
Mn, then the vertical lift ξv is a unit normal vector field on a hypersurface
T1M

n ⊂ TMn. Since ξ is of unit length, ξ∗X ⊥ ξv and hence, in fact,
ξ∗ : TMn → T (T1M

n).
Denote by At

ξ : ξ⊥q → TqM
n a formal adjoint operator

〈
AξX,Y

〉
=

〈
X,At

ξY
〉
.

Then for each Z ∈ ξ⊥q the vector field

Z̃ = (At
ξZ)h + Zv

is normal to ξ(Mn).
Evidently, ξ(Mn) is totally geodesic in T1M

n if and only if at each point
q ∈ Mn

〈〈
∇̃ξ∗X ξ∗Y, Z̃

〉〉
= 0

where ∇̃ is the Levi-Civita connection of Sasaki metric on TMn. To calculate
∇̃ξ∗X ξ∗Y , use formulas [6], namely,

∇̃XhY h = (∇XY )h � 1
2(R(X,Y )ξ)v , ∇̃XvY h = 1

2(R(ξ,X)Y )h,

∇̃XhY v = (∇XY )v + 1
2(R(ξ1, Y )X)h, ∇̃XvY v = 0.

(5)

A direct calculation yields

∇̃ξ∗X ξ∗Y =
(
∇XY + 1

2R(ξ,∇Xξ)Y + 1
2R(ξ,∇Y ξ)X

)h
+

(
∇X∇Y ξ � 1

2
R(X,Y )ξ

)v
.

Therefore, ξ(Mn) is totally geodesic if and only if

〈
∇X∇Y ξ � 1

2
R(X,Y )ξ, Z

〉
+

〈
∇XY +

1
2
R(ξ,∇Xξ)Y +

1
2
R(ξ,∇Y ξ)X,At

ξZ
〉

= 0
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or equivalently

〈
∇X∇Y ξ� 1

2
R(X,Y )ξ+Aξ

�
∇XY +

1
2
R(ξ,∇Xξ)Y +

1
2
R(ξ,∇Y ξ)X

)
, Z

〉
= 0.

Since Z ∈ ξ⊥, we can rewrite the letter equation as

∇X∇Y ξ � 1
2
R(X,Y )ξ + Aξ

�
∇XY +

1
2
R(ξ,∇Xξ)Y +

1
2
R(ξ,∇Y ξ)X

)
= ρ ξ,

where ρ is some function. Finally, remark that

R(X,Y )ξ = ∇X∇Y ξ �∇Y ∇Xξ �∇[X,Y ]ξ

and after substitution we get

1
2
�
∇X∇Y ξ + ∇Y ∇Xξ �∇∇XY ξ �∇∇Y Xξ

)
+

1
2
Aξ

�
R(ξ,∇Xξ)Y + R(ξ,∇Y ξ)X

)
= ρ ξ.

Taking into account (1), (2) and (3) we can write

�Hessξ(X,Y ) + AξHmξ(X,Y ) = ρ ξ.

Multiplying the equation above by ξ, we can find easily ρ = �
〈
AξX,AξY

〉
.

So, finally

Hessξ(X,Y ) = AξHmξ(X,Y ) +
〈
AξX,AξY

〉
ξ

which completes the proof.
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