On totally geodesic unit vector fields.

Yampolsky A.

Let T_1M be a unit tangent bundle of M endowed with Sasaki metric [8]. If ξ is a unit vector field on M, then one may consider ξ as a mapping $\xi: M \to T_1M$. The image $\xi(M)$ is a submanifold transverse to fibers in T_1M with metric induced from T_1M . Conversely, a manifold transverse to fibers in the (unit) tangent bundle can be given as image of some (unit) vector field on the base manifold [1]. Thus, a transverse to fibers submanifold in T_1M^n always can be locally represented by a unit vector field.

A unit vector field ξ is said to be minimal if $\xi(M)$ is a minimal submanifold in T_1M . A unit vector field on S^3 tangent to fibers of Hopf fibration $S^3 \xrightarrow{S^1} S^2$ is a unique one with globally minimal volume [4]. This result fails in higher dimensions. A lower volume has a vector field with one singular point. This field is a stereographic projection inverse image of parallel vector field on E^n [7]. The lowest volume has the North-South vector field with two singular points [3]. In [10] the author found the second fundamental form of $\xi(M)$ and presented some examples of vector fields with constant mean curvature. This result is a key to solve a problem on totally geodesic unit vector fields on a given Riemannian manifold. In [11] this question was treated in a case of 2-manifolds of constant curvature and in [13] was found an example of totally geodesic unit vector field on a surface of revolution with non-constant but sign-preserving Gaussian curvature.

In this note we drive the differential equation in covariant derivatives on a unit vector field such that its solution provides a totally geodesic property for $\xi(M^n)$

Let ξ be a fixed *unit* vector field on Riemannian manifold M^n . Denote by $A_{\xi}: T_q M^n \to \xi_q^{\perp}$ a point-wise linear operator, acting as

$$A_{\xi}X = -\nabla_X\xi$$

In case of integrable distribution ξ^{\perp} , the operator A_{ξ} is symmetric and is known as Wiengarten or a shape operator for each hypersurface of the foliation.

In general, A_{ξ} is not symmetric, but formally preserves the Codazzi equation. Namely, a covariant derivative of A_{ξ} is defined by

$$(\nabla_X A_{\xi})Y = \nabla_X \nabla_Y \xi \quad \nabla_{\nabla_X Y} \xi. \tag{1}$$

Then for the curvature operator of M^n we can write down the non-holonomic Codazzi equation

$$R(X,Y)\xi = (\nabla_Y A_\xi)X \quad (\nabla_X A_\xi)Y.$$

Remark, that the right hand side is, up to constant, a *skew symmetric part* of covariant derivative of A_{ξ} .

Introduce a symmetric tensor field

$$Hess_{\xi}(X,Y) = \frac{1}{2} \big[(\nabla_Y A_{\xi}) X + (\nabla_X A_{\xi}) Y \big], \tag{2}$$

which is a symmetric part of covariant derivative of A_{ξ} . The trace

$$\sum_{i=1}^{n} Hess_{\xi}(e_i, e_i) := \Delta\xi,$$

where $e_1, \ldots e_n$ is an orthonormal frame, is known as rough Laplacian [2] of the field ξ . Therefore, one can treat the tensor field (2) as a rough Hessian of the field. A vector field is called *harmonic*, if it is a critical point of energy functional of mapping $\xi : M^n \to T_1 M^n$. Up to an additive constant, this functional is a total bending of a unit vector field [9] and the unit vector field is harmonic if and only if $\Delta \xi = |\nabla \xi|^2 \xi$, where $|\nabla \xi|^2 = \sum_{i=1}^n |\nabla_{e_i} \xi|^2$ with respect to orthonormal frame $e_1, \ldots e_n$ [9].

Introduce a tensor field

$$Hm_{\xi}(X,Y) = \frac{1}{2} \big[R(\xi, \nabla_X \xi) Y + R(\xi, \nabla_Y \xi) X \big], \tag{3}$$

which is a symmetric part of tensor field $R(\xi, \nabla_X \xi)Y$. The trace

$$\Delta H_{\xi} := \sum_{i=1}^{n} Hm_{\xi}(e_i, e_i)$$

is responsible for harmonicity of mapping $\xi : M^n \to T_1 M^n$. Precisely, a harmonic unit vector field ξ defines a harmonic map $\xi : M^n \to T_1 M^n$ if and only if $\Delta H_{\xi} = 0$ [5]. From this viewpoint, it is natural to call the tensor field (3) as harmonicity tensor of the field ξ .

Definition 1 A unit vector field ξ on Riemannian manifold M^n is called totally geodesic if the image of (local) imbedding $\xi : M^n \to T_1 M^n$ is totally geodesic submanifold in the unit tangent bundle $T_1 M^n$ with Sasaki metric.

Now we can state a basic condition under which a given unit vector field ξ generates a totally geodesic submanifold in $T_1 M^n$.

Proposition 1 Let M^n be Riemannian manifold and T_1M^n its unit tangent bundle with Sasaki metric. Let ξ a smooth (local) unit vector field on M^n . The vector field ξ generates a totally geodesic submanifold $\xi(M^n) \subset T_1 M^n$ if and only if ξ satisfies

$$Hess_{\xi}(X,Y) = A_{\xi}Hm_{\xi}(X,Y) + \left\langle A_{\xi}X, A_{\xi}Y \right\rangle \xi$$

for all (local) vector fields X and Y on M^n .

Proof. The differential of mapping $\xi: M^n \to TM^n$ is acting as

$$\xi_* X = X^h + (\nabla_X \xi)^v = X^h \quad (A_{\xi} X)^v,$$
(4)

where ∇ means Levi-Civita connection on M^n and the lifts are considered to points of $\xi(M^n)$. It is well known that if ξ is a unit vector field on M^n , then the vertical lift ξ^v is a *unit normal* vector field on a hypersurface $T_1 M^n \subset T M^n$. Since ξ is of unit length, $\xi_* X \perp \xi^v$ and hence, in fact, $\xi_*: TM^n \to T(T_1M^n).$ Denote by $A^t_{\xi}: \xi^{\perp}_q \to T_qM^n$ a formal adjoint operator

$$\langle A_{\xi}X, Y \rangle = \langle X, A_{\xi}^{t}Y \rangle.$$

Then for each $Z \in \xi_q^{\perp}$ the vector field

$$\tilde{Z} = (A^t_{\mathcal{E}}Z)^h + Z^v$$

is normal to $\xi(M^n)$.

Evidently, $\xi(M^n)$ is totally geodesic in T_1M^n if and only if at each point $q \in M^n$

$$\left\langle \left\langle \tilde{\nabla}_{\xi_* X} \, \xi_* Y, \tilde{Z} \right\rangle \right\rangle = 0$$

where $\tilde{\nabla}$ is the Levi-Civita connection of Sasaki metric on TM^n . To calculate $\nabla_{\xi_*X} \xi_*Y$, use formulas [6], namely,

$$\tilde{\nabla}_{X^{h}}Y^{h} = (\nabla_{X}Y)^{h} \quad \frac{1}{2}(R(X,Y)\xi)^{v}, \qquad \tilde{\nabla}_{X^{v}}Y^{h} = \frac{1}{2}(R(\xi,X)Y)^{h},
\tilde{\nabla}_{X^{h}}Y^{v} = (\nabla_{X}Y)^{v} + \frac{1}{2}(R(\xi_{1},Y)X)^{h}, \qquad \tilde{\nabla}_{X^{v}}Y^{v} = 0.$$
(5)

A direct calculation yields

$$\tilde{\nabla}_{\xi_*X}\,\xi_*Y = \left(\nabla_X Y + \frac{1}{2}R(\xi,\nabla_X\xi)Y + \frac{1}{2}R(\xi,\nabla_Y\xi)X\right)^h + \left(\nabla_X\nabla_Y\xi - \frac{1}{2}R(X,Y)\xi\right)^v.$$

Therefore, $\xi(M^n)$ is totally geodesic if and only if

$$\langle \nabla_X \nabla_Y \xi - \frac{1}{2} R(X, Y) \xi, Z \rangle + \langle \nabla_X Y + \frac{1}{2} R(\xi, \nabla_X \xi) Y + \frac{1}{2} R(\xi, \nabla_Y \xi) X, A_{\xi}^t Z \rangle = 0$$

or equivalently

$$\left\langle \nabla_X \nabla_Y \xi \quad \frac{1}{2} R(X,Y) \xi + A_{\xi} \quad \nabla_X Y + \frac{1}{2} R(\xi, \nabla_X \xi) Y + \frac{1}{2} R(\xi, \nabla_Y \xi) X \right\rangle, Z \right\rangle = 0.$$

Since $Z \in \xi^{\perp}$, we can rewrite the letter equation as

$$\nabla_X \nabla_Y \xi \quad \frac{1}{2} R(X, Y)\xi + A_\xi \ \nabla_X Y + \frac{1}{2} R(\xi, \nabla_X \xi)Y + \frac{1}{2} R(\xi, \nabla_Y \xi)X \Big) = \rho \,\xi,$$

where ρ is some function. Finally, remark that

$$R(X,Y)\xi = \nabla_X \nabla_Y \xi \quad \nabla_Y \nabla_X \xi \quad \nabla_{[X,Y]}\xi$$

and after substitution we get

$$\frac{1}{2} \nabla_X \nabla_Y \xi + \nabla_Y \nabla_X \xi \quad \nabla_{\nabla_X Y} \xi \quad \nabla_{\nabla_Y X} \xi \big) + \frac{1}{2} A_{\xi} R(\xi, \nabla_X \xi) Y + R(\xi, \nabla_Y \xi) X \big) = \rho \xi.$$

Taking into account (1), (2) and (3) we can write

$$Hess_{\xi}(X,Y) + A_{\xi}Hm_{\xi}(X,Y) = \rho\,\xi.$$

Multiplying the equation above by ξ , we can find easily $\rho = \langle A_{\xi}X, A_{\xi}Y \rangle$. So, finally

$$Hess_{\xi}(X,Y) = A_{\xi}Hm_{\xi}(X,Y) + \left\langle A_{\xi}X, A_{\xi}Y \right\rangle \xi$$

which completes the proof.

References

- M.T.K. Abbassi, A. Yampolsky Totally geodesic submanifolds transverse to fibers of the tangent bundle of a Riemannian manifold with Sasaki metric. Math. Publ. Debrecen 64/1-2 (2004), 129-154.
- [2] Besse A. Einstein Manifolds, Springer-Verlag, 1987.
- [3] Brito F., Chacon P., Naveira A. On the volume of vector fields on spaces of constant sectional curvature, Preprint, 2001.
- [4] Gluck H., Ziller W. On the volume of a unit vector field on the threesphere. Comm. Math. Helv. 61 (1986), 177-192.
- [5] Gil-Medrano O. Relationship between volume and energy of unit vector fields, Diff. Geom. Appl., 15 (2001), 137-152.

- [6] Kowalski O. Curvature of the induced Riemannian metric on the tangent bundle of a Riemannian manifold. J. Reine Angew. Math. 250(1971), 124-129.
- [7] Pedersen S. L. Volumes of vector fields on spheres, Trans. Amer. Math. Soc. 336 (1993), 69-78.
- [8] Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10 (1958), 338-354.
- [9] Weigmink G. Total bending of vector fields on Riemannian manifolds, Math. Ann. 303 (1995), 325 - 344.
- [10] Yampolsky A. On the mean curvature of a unit vector field, Math. Publ. Debrecen, 60/1-2 (2002), 131 – 155.
- [11] Yampolsky A. On the intrinsic geometry of a unit vector field, Comment. Math. Univ. Carolinae 43, 2 (2002), 299-317.
- [12] Yampolsky A. A totally geodesic property of Hopf vector fields, Acta Math. Hungar. 101(1-2) (2003), 93-112.
- [13] Yampolsky A. On extrinsic geometry of unit normal vector field of Riemannian hyperfoliation, Math. Publ. Debrecen, 63/4 (2003), 555 – 567.
- [14] Yampolsky A. Full description of totally geodesic unit vector fields on 2-dimensional Riemannian manifold. Mat. Fiz. Anal. and Geom. 2004, 11/3, 355-365.

Department of Geometry, Faculty of Mechanics and Mathematics, Kharkiv National University, Svobody Sq. 4, 61077, Kharkiv, Ukraine. e-mail: yamp@univer.kharkov.ua