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Two approaches to minimal surfaces in Rie-

mannian manifolds:

1. Geometric measure theory (works in com-

plete generality).

2. Global analysis on infinite-dimensional man-

ifolds (works only for minimal surfaces of di-

mension two in an ambient space of arbitrary

dimension).

We favor the second approach which empha-

sizes the relationship between minimal surfaces

and nonlinear partial differential equations.



As mentioned yesterday, the simplest second-

order linear partial differential equation of el-

liptic type is

∂2f

∂x2
+

∂2f

∂y2
= 0.

Here we assume that f is vector-valued, that

is, that it takes its values in RN .

The simplest way to make this equation nonlin-

ear is to consider maps into a curved ambient

manifold,

f : Σ −→ M ⊂ RN ,

and replace the partial differential equation by(
∂2f

∂x2
+

∂2f

∂y2

)>
= 0,

where (·)> represents orthogonal projection into

the tangent space. Here Σ is a Riemann sur-

face and (x, y) are locally defined conformal

coordinates on Σ.



A solution to this nonlinear partial differential

equation is called a harmonic map. The equa-

tion for harmonic maps can also be written in

terms of the Levi-Civita connection D on the

ambient Riemannian manifold M :

D

∂x

(
∂f

∂x

)
+

D

∂y

(
∂f

∂y

)
= 0.

If z = x + iy, we can also write this as

4
D

∂z̄

(
∂f

∂z

)
= 0,

where
∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
.



Let E = f∗TM ⊗ C. According to a theorem

of Koszul and Malgrange, there is a unique

holomorphic structure on the complex vector

bundle E such that a section W of E is holo-

morphic if and only if DW/∂z̄ = 0, where D

is the pullback of the Levi-Civita connection.

Thus the equation of harmonic maps simply

says that

∂f

∂z
is holomorphic

as a section of E. This suggests that com-

plex analysis (Riemann surfaces and holomor-

phic vector bundles over them) should play a

major role in the theory of harmonic maps of

surfaces into general ambient manifolds.



Of course, the holomorphic section

∂f

∂z
of E = f∗TM ⊗ C

depends on the conformal parameter z on Σ.

For an invariant description of harmonic maps,

we can demand that the section

∂f

∂z
dz of E ⊗K = f∗TM ⊗K

be holomorphic (where again K denotes the

holomorphic cotangent bundle of Σ). The lo-

cally defined holomorphic sections

∂f

∂z
of E

generate a holomorphic line subbundle L of E

and

∂f

∂z
dz is a holomorphic section of L⊗K.



Recall the variational formulation given yester-

day: Consider the energy

E : Map(Σ, M)× T → R,

which is defined by

E(f, ω) =
1

2

∫
Σ
|df |2dA.

Here Σ is a Riemann surface of a given genus

g and T is the Teichmüller space of conformal

structures on Σ. The norm of df and the area

element on Σ are calculated with respect to

any Riemannian metric within the conformal

equivalence class selected by ω. (E does not

depend on the choice of metric on Σ, only its

conformal equivalence class.)

For fixed choice of ω, we also define

Eω : Map(Σ, M) → R, Eω(f) = E(f, ω).



Critical points of Eω are just harmonic maps,

harmonic with respect to the conformal struc-

ture ω ∈ T . Critical points of the two-variable

function E are not just harmonic, but it turns

out that they are also weakly conformal, that

is, 〈
∂f

∂x
,
∂f

∂x

〉
=

〈
∂f

∂y
,
∂f

∂y

〉
,

〈
∂f

∂x
,
∂f

∂y

〉
= 0.

We can also express this in complex form as〈
∂f

∂z
,
∂f

∂z

〉
= 0,

when the Riemannian metric has been extended

in a complex linear fashion to E.



In terms of conformal coordinates (x, y) on Σ,

the formula for energy can be written

Eω(f) =
1

2

∫
Σ

(∂f

∂x

)2
+

(
∂f

∂y

)2
 dxdy.

Thus it is really the celebrated Dirichlet inte-

gral. The ω-energy Eω is closely related to the

area function

A : Map(Σ, M) → R,

which is defined by

A(f) =
∫
Σ

∣∣∣∣∣∂f

∂x
∧

∂f

∂y

∣∣∣∣∣ dxdy.



To see that critical points for the two-variable

energy E are also critical for A, one can rea-

son as follows: It is a simple fact from vector

algebra that

|v ∧ w| ≤
1

2
(v · v + w · w)

with equality holding only if

〈v, v〉 = 〈w, w〉, 〈v, w〉 = 0.

It follows from this that

A(f) ≤ E(f, ω)

with equality holding if and only if f is weakly

conformal. It follows that a conformal har-

monic map is a critical point for area, that is,

a minimal surface in the classical sense.



Conversely, if f : Σ → M is a minimal immer-

sion, and Σ is given the conformal structure

induced by f , then f is harmonic.

However, critical points of our variational prob-

lem need not be immersions—branch points

can occur, for example, when the ambient man-

ifold M is Kähler.

Branch points correspond to zeros of the holo-

morphic section

∂f

∂z
dz.



One way in which branch points can occur is in

branched covers of minimal surfaces of smaller

area.

We say that a nonconstant minimal surface

f : Σ → M is a branched cover of a minimal

surface f0 : Σ0 → M if there is a holomorphic

map g : Σ → Σ0 of positive degree such that

f = f0 ◦ g.

( Recall that a branched cover g : T2 → S2

can be identified with a meromorphic function

on T2. Whenever minimal two-spheres f0 :

S2 → M , they can be covered by minimal tori

with branch points that persist under generic

perturbations.)

Definition A nonconstant minimal surface f :

Σ → M is prime if it is not a covereing (possibly

branched) of a nonconstant minimal surface

f0 : Σ → M of smaller area.



It is natural to ask: What the properties of

solutions to this nonlinear partial differential

equation when the Riemannian metric on the

ambient space is chosen to be generic? By

generic metric, we mean that the metric be-

longs to a countable intersection of open dense

subsets of the space of metrics when it is given

an appropriate Sobolev norm. This notion of

generic has been much used in the study of the

Yang-Mills equation, the Seiberg-Witten equa-

tions, and other nonlinear partial differential

equations of geometric interest. Generic prop-

erties of solutions to nonlinear partial differ-

ential equations are those which persist under

perturbation in the data.

The technique used for studying generic prop-

erties is the Sard-Smale theorem from the the-

ory of infinite-dimensional manifolds.



Bumpy Metric Theorem. For generic choice

of Riemannian metric on the compact manifold

M , all prime minimal two-spheres and all prime

minimal tori in M are free of branch points

and lie on nondegenerate critical submanifolds

in the sense of Bott, each such submanifold

being an orbit for the action of PSL(2, C) in

the case of the torus, S1 × S1 in the case of

the torus.

A preprint which gives a proof of this theorem

is available at:

http://www.math.ucsb.edu/ moore/bumpy.pdf



Let us explain the definition of nondegenerate

critical submanifold appearing in the statement

of the theorem. We take the case of the torus

for example. As mentioned yesterday, a diffi-

culty in the projected Morse theory of minimal

tori is that critical points for

E : M = Map(T2, M)× T → R

can never be nondegenerate in the usual sense,

because E is preserved by the group action

φ : M×G →M,

where G = S1 × S1 is the torus group of rota-

tions on the two factors.



Let M = Map(Σ, M)× T .

A nondegenerate critical submanifold of M is

a finite-dimensional submanifold N such that

1. every p ∈ N is a critical point for E.

2. if (f, ω) ∈ N , then TpN is the set of X ∈
T(f,ω)M such that d2E(p)(X, Y ) = 0, for

all Y ∈ T(f,ω)M.

Our Bumpy Metric Theorem states that after

a small perturbation of the metric, it can be

arranged that all prime minimal tori lie on such

submanifolds.



The case of the sphere is simplest in some

ways, since the Teichmüller space of the sphere

is a single point.

To understand Map(S2, M) near a critical point

f , we need to linearize the Euler-Lagrange equa-

tions at a critical point.

Just as the Euler-Lagrange equations for har-

monic maps come from the first derivative of

E, the linearization comes from the second:

d2Eω(f)(X, Y ) =
∫
S2
〈Lf(X), Y 〉dA,

for X, Y ∈ TfMap(S2, M). The second order

elliptic partial differential operator Lf is called

the Jacobi operator .



By definition, a Jacobi field is a solution

X ∈ TfMap(S2, M) to Lf(X) = 0.

Holomorphic sections of the holomorphic line

bundle L are always Jacobi fields, and the di-

mension of the space of such holomorphic sec-

tions is

6 + (total branching order),

in the case of the sphere. The Bumpy Met-

ric Theorem implies that for generic choice of

metric, the only Jacobi fields are holomorphic

sections of L in the case where the domain is

S2, and the dimension of this space of Jacobi

fields is exactly six.



To see why holomorphic sections of L are Ja-

cobi fields, we can extend d2Eω(f) to a com-

plex bilinear form on E. An integration by

parts (carried out in the article by Micallef and

Moore of 1988) shows that

d2Eω(f)(W, Z) = 4
∫
Σ

[〈
DW

∂z̄
,
DZ

∂z̄

〉
−
〈
R
(
W ∧

∂f

∂z

)
, W ∧

∂f

∂z̄

〉]
dxdy,

R being the curvature operator.

The first term on the right vanishes when V is

holomorphic, the second when V is a section

of L.



Definition. The Morse index of a nondegen-

erate critical submanifold N ⊂ Map(S2, M) is

the dimension of a maximal subspace on which

d2E(f) is negative definite.



Here is a rough idea of the proof of the Bumpy

Metric Theorem in the case where Σ = S2:

In many ways, the hardest step consists of

showing that for generic metrics, minimal spheres

do not have branch points, but suppose that

we have already done that.

Let Met(M) denote the manifold of Ck−1 Rie-

mannian metrics on M . Let

S = {(f, g) ∈ Map(S2, M)×Met(M)

|f is harmonic for the metric g

and f has no branch points}.



There are two steps to the proof:

• S is a submanifold of Map(S2, M)×Met(M).

• The projection π : S → Met(M) onto the

second factor is Fredholm of Fredholm in-

dex six.

We then apply the Sard-Smale theorem to show

that almost all elements g ∈ Met(M) are reg-

ular values for π. If g is a regular value for

π, all the minimal two-spheres in π−1(g) lie

on one-dimensional nondegenerate critical sub-

manifolds.

This proof outline is identical to the proof of

corresponding theorems in Yang-Mills and Seiberg-

Witten theories.



The Bumpy Metric Theorem (together with

other facts about harmonic and α-harmonic

maps) can be used to prove:

Corollary 1. For generic choice of Riemannian

metric on the compact manifold M , all prime

minimal two-spheres and all prime minimal tori

in M are immersions with transversal crossings.

In particular, if the dimension of M is at least

five, they are imbeddings.

Corollary 2. If the compact manifold M has fi-

nite fundamental group and dimension at least

five, then for generic choice of Riemannian

metric on M , there are only finitely many prime

minimal two-spheres with energy less than a

given bound. Moreover, there are only finitely

many minimal tori and Klein bottles with en-

ergy below a given bound and conformal struc-

ture in a given compact subset of Teichmüller

space.



The proofs of the corollaries also makes use of

the α-energy introduced by Sacks and Uhlen-

beck (Annals of Math., 1981). The α-energy ,

for α > 1, is the function

Eα : Map(Σ, M)× T → R,

defined by the formula

Eα(f, ω) =
1

2

∫
Σ
[(1 + |df |2)α − 1]dA.

For fixed choice of ω

Eα,ω : Map(Σ, M) → R, Eα,ω(f) = Eα(f, ω),

satisfies condition C in a suitable completion

of Map(Σ, M). Note that Eα → E as α → 1.



The right completion of Map(Σ, M) is the space

of maps of Sobolev class L2α
1 and is denoted

by L2α
1 (Σ, M). One can show that L2α

1 (Σ, M)

is a Banach manifold with a complete Finsler

metric. It is therefore possible to develop a

Liusternik-Schnirelmann theory for Eα,ω which

established existence of α-energy critical points

in many cases.

In the limit as α → 1, sequences of α-energy

critical points tend to approach bubble trees,

consisting of a base minimal surface, together

with a collection of minimal two-spheres con-

nected by a tree of curves.



For example, here are two theorems obtained

via this approach by Sacks and Uhlenbeck:

Theorem 1. Any compact Riemannian man-

ifold whose universal is not contractible con-

tains at least one minimal two-sphere.

(This is an analog of a classical theorem of

Liusternik and Fet for closed geodesics.)

Theorem 2. If M is compact and simply con-

nected a basis for H2(M ;R) can be represented

by minimal two-spheres.



Our Bumpy Metric Theorem and its corollaries

show that the two-spheres in Theorems 1 and

2 are imbedded for generic choice of metric.

Existence results of this type—in which we de-

mand that the minimal surfaces have a specific

topological type—seem to be easier to obtain

via the parametrized viewpoint than via geo-

metric measure theory.



The Bumpy Metric Theorem and its corollaries

provide part of the foundation for our goal of

using the α-energy to develop a partial Morse

theory for minimal tori, and more generally,

minimal surfaces of other genus.

The simplest extension concerns minimal spheres

and tori of small energy. After renormalization,

we can suppose that the Riemannian metric on

M satisfies the condition that all of its sectional

curvatures are ≤ 1.

In this case, the curvature of any minimal sur-

face in M must satisfy K ≤ 1, and it follows

from Gauss-Bonnet that if f is minimal

E(f) = A(f) ≥
∫
Σ

KdA = 2πχ(M),

χ(M) being the Euler characteristic of M .



In particular, the energy or area of any minimal

two-sphere must be at least 4π. This prevents

bubbling of minimal two-spheres when the en-

ergy is < 8π. Following an article of ours in

Math. Ann. (vol. 288, 1990), it is possible to

establish equivariant Morse inequalities for

Map(Σ, M)8π− = {f ∈ Map(Σ, M) : E(f) < 8π}.

These enable us to show the existence of at

least (
n + 1

3

)
geometrically distinct prime minimal two-spheres

in suitably pinched metrics on n-spheres, for

example.

To get better results of this type, we need a

better understanding of bubbling.


