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PSEUDO-SPHERICAL CONGRUENCIES IN E*

Let F, F'* be regular two-dimensional surfaces with
point codlmensmn 2 1 four-dimensional Euclidean
space E’. A line congruence y. F — F* 1s a
diffeomorphism such that for each point PeF the
straight line joining P and P* = y (P) 1s a common
tangent line for F' and F*. The line congruence v is
called pseudo-spherical if:

1) the distance |[PP*| between P and P* 1s equal to /y,

a non-zero constant independent of P.

2) the angle between planes tangent to F and F'* at
correspondent points P and P* is a non-zero
constant @, independent of P.

This construction corresponds to the classical
definition of pseudo-spherical congruencies for n-
dimensional submanifolds 1in (2n-/)-dimensional
Euclidean space [1].
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Generalising classical results by L.Bianchi,
G.Darboux and A.V.Backlund, K.Teneblat and C.-
L.Terng are demonstrated that if two n-dimensional
submanifolds M, M* in E*"" are relied by a pseudo-
spherical congruence, then both M and M* have
constant negative sectional curvature. Moreover, an
arbitrary submanifold M" of constant negative
sectional curvature in E*"" admits a large continuous
family of different pseudo-spherical congruencies [1].

Submanifolds of constant negative sectional
curvature in Euclidean space are usually referred to as
pseudo-spherical. A pseudo-spherical congruence
M — M*in E "' when viewed as a transformation of
n-dimensional submanifolds, 1s called a Backlund
transformation of pseudo-spherical submanifolds.

The presented geometric construction was of great
importance for the soliton theory. Now it 1s well-
known that pseudo-spherical n-dimensional submani-
folds in E”*' are described by solutions of some
special system of non-linear PDEs generalising the
classical sine-Gordon equation z,, =ksinz. The
geometric Backlund transformation of pseudo-
spherical submanifolds may be interpreted as some
particular differential relations between corresponding
solutions of the mentioned system of non-linear PDEs.
These relations posses various interesting properties,
whose studying generated important ideas for the
theory of solitons. So, actually the pseudo-spherical n-
dimensional submanifolds in £ " present one of the
most used examples of integrable systems [2].



As for n-dimensional pseudo-spherical submanifolds
in E™ with m>2n-1, an appropriate theory of
Backlund transformations is not developed yet. The
studying of pseudo-spherical congruencies between
two-dimensional surfaces in E’ was initiated by
Yu.Aminov and A.Sym 1n [3], later some results were
obtained by the author: it was demonstrated that the
situation here has to be rather different from the
classical one.

In order to exclude the particular class of surfaces in
three-dimensional affine planes in E*, which can be
treated like to surfaces in E°, we will consider surfaces
in E* with two-dimensional first normal space only.
Every such surface in E* does not belong to any E° in
E’, moreover it has a non-degenerate Gauss image.

First of all, if a surface F° in E? admits a line
congruence, then from local point of view there are
two possibilities. Either F' i1s a Cartan surface, i.e. it
has a unique net of conjugate curves, and the line
congruence is determined by straight lines tangent to
one family of conjugate curves. Or F' is foliated by
asymptotic curves and the line congruence 1is
determined by straight lines tangent to these
asymptotic curves. So, a generic surface F* with two-
dimensional first normal space in E? admits at most
two different line congruencies. This conclusion leads
to some crucial differences between three- and four-
dimensional cases. Note that line congruencies for
Cartan surfaces and conjugate nets are widely
discussed 1n [2].



On one hand, some classical statements still valid for
surfaces in E*.

Theorem 1. Let w: FF — F* be a pseudo-spherical
congruence between two-dimensional surfaces in
four-dimensional Euclidean space E*. Then F and F*
are surfaces of constant negative Gauss curvature
K:-Sin20)0/102.

On the other hand, a two-dimensional surface F’ with
constant negative Gauss curvature and with two-
dimensional first normal space in E* admits at most
two different pseudo-spherical congruencies, contrary
to the classical case. Moreover, there are some reasons
to conjecture that a generic two-dimensional surface F
with constant negative Gauss curvature in £’ does not
admit pseudo-spherical congruencies. One reason 1is
that 1f a surface with constant negative Gauss
curvature in E* admits a pseudo-spherical congruence,
then it has to be a Cartan surface. However, it 1s very
possible that in E’ there exist pseudo-spherical
surfaces without conjugate nets, actually it 1s an open
question. As for Cartan surfaces with constant
negative Gauss curvature in E*, every such surface
admits at most two different pseudo-spherical
congruencies, so an interesting open problem is to
find and to describe Cartan surfaces with constant
negative Gauss curvature in E' which admit either
exactly one or exactly two pseudo-spherical congru-
encies. Some partial answer are discussed below.



Bianchi transformations

Similarly to the classical case, the pseudo-spherical
congruencies F — F* in E’ with @y = 7/2 are referred
to as the Bianchi congruencies. The Bianchi
congruencies are closely related to the Bianchi
transformations of pseudo-spherical surfaces in E’
discussed by Yu.Aminov and A.Sym [3]. It was
demonstrated that a generic surface of constant
negative Gauss curvature in E* does not admit Bianchi
congruencies. Besides the pseudo-spherical surfaces
in E’ that admit Bianchi congruencies form a
particular class of surfaces [3].

One way to study the Bianchi congruencies is based
on horocyclic coordinates. Namely, let F' be a surfaces
in £/ with Gauss curvature K = -/ paramete-rised by
horocyclic coordinates u, v. The metric form of F is
ds’ = du’ + e dv’, the coordinate lines v=const are
geodesics, the coordinate lines wu=const are
horocircles. Consider a transformation y: F — F*
presented by the following relation:

p*=p-ap, (BT)
where p*(u,v) and p(u,v) denote the position-vectors
of F and F* respectively. The mapping  is called a
Bianchi tranformation [3]. Contrary to the classical
case, when a similar mapping transforms a pseudo-
spherical surface in E° with K=-1 into another pseudo-
spherical surface in E° with K=-1 , the Gauss curvature



of F* under consideration 1s not constant. The
principal reason is that now the analysed map y 1s not
a line congruence. However, if y 1s additionally
supposed to be a line congruence then it 1s a Bianchi
congruence (wy = n/2, lp)=I1) and F* 1s a pseudo-
spherical surface with K=-1.

The coefficients of fundamental forms of F* with
respect to the applied horocyclic coordinates have to
satisfy some complicated particular system of non-
linear PDEs resulted from the Gauss-Codazzi-Ricci
equations for /' and from the assumption that y 1s a
line congruence. It was demonstrated in [3] that
generically this system 1s not satisfied. Thus the
pseudo-spherical surfaces in E*, whose Bianchi
transformation (BT) are Bianchi congruencies, form a
particular class of surfaces.

Note that a Bianchi congruence always presents a
Bianchi transformation. In fact, if w: FF — F* is
supposed to be a Bianchi congruence, when F' and F'*
are pseudo-spherical by Theorem 1. Next one can
prove that there exist a horocyclic coordinate system
u, v on F such that the position-vectors of ' and F*
are relied by (B), so w1s a Bianchi tranformation.

Thus 1t seems more natural to study the Bianchi
congruencies rather than the Bianchi tranformations.

In our opinion, this way corresponds better to original
ideas by L.Bianchi, G.Darboux and A.V.Backlund.



Without loss of generality we may suppose that F' 1s
a Cartan surface, i.e. F' contains a unique net of
conjugate lines (conjugate with respect to the second
fundametal forms of F). Let x, y stand for the
corresponding coordinate system on F, 1.e. coordinate
lines x=const and y=const form the mentioned
conjugate net on F. Our main results are two
following statement.

Theorem 2. Let F be a Cartan surface in E*. Let v
F — F* be a Bianchi congruence (wy) = /2, ly=1).
Then F and F* are pseudo-spherical surfaces with
Gauss curvature K=-1. Moreover, a unique conjugate
net x,y on F'is nowhere orthogonal and the coordinate
lines y=const of this conjugate net are presented by
parallel geodesics with horocyclic orthogonal trajec-
tories. In the general situation F* is also a Cartan
surface, the lines x=const and y=const on F'* form a
conjugate net, the lines x=const are presented by
parallel geodesics with horocyclic trajectories. If

p(x,y) is the position-vector of F, when the position-
vector p*(x,y) of F'* has the following form:

pr=p- Op (BC)

where  stand for the Chrystoffel symbols of F.

Thus, if a pseudo-spherical Cartan surface in E’
admits a Bianchi congruence then its conjugate net
must have particular properties relied to the intrinsic
geometry of F. It turns out that this necessary
condition is also sufficient.



Theorem 3. Let F be a Cartan surface in E* with
Gauss curvature K=-1. Suppose that a unique
conjugate net x,y on I is nowhere orthogonal and the
coordinate lines y=const of this conjugate net are
presented by parallel geodesics with horocyclic
orthogonal trajectories. Then a map w:. F — F*

represented in terms of position-vectors by (BC) is a
Bianchi congruence.

Moreover one can demonstrate that a pseudo-
spherical surface F in E’ satisfies the conditions of
Theorem 3 if and only if the fundamental forms of F
can be written in terms of some coordinates x, y on F
as follows:

the first fundamental form
I=(dp) +e” @)
the second fundamental forms
II' = Go (dx)’ - G € (dy)’,
IF = Pe(dy)’,
the normal connection
=0, 1>=0.

Here ¢(x,y), P(x,y), O(x,y) — some functions which
have to satisfy following system of 3 PDEs (the
Gauss-Codazzi-Ricci  equations) accompanied by
regularity conditions:



O’ +4,¢% +2 (PO+1) =0, (B

AP-Adpe? Q=0, (B2)
5,0+ dpe’ P=0, (B3)
P+£0, Q#0, Gp>0, S,p>0. (B4)

Thus, a pseudo-spherical Cartan surface F in E’
which admits a Bianchi congruence w: F — F™
corresponds to a solution {¢(x,y), P(x,y), O(,y)} of
(B1-B4). As for the fundamental forms of £'*, it turns

out that they are expressed in terms of ¢(x,y), P(x,y),
O(x,y) as follows:

I* = e (dx)” + (dgp)”

¥ = g e (dy)’ - 8p ()’
7% = Qe (dx)’,
u*=0, u*>=

Therefore, 1t 1s easy to see that the Bianchi

congruence . F'— F* corresponds to the following
algebraic transformation of solutions of (B1-B4):

{lo(x.y), P()i,y), Ox.y)}
{-0(3,%), -O(-y,x), -P(-y,-x)}

Problem. Is (B1-B3) an integrable system?



Example 1. Let us find a travelling wave solution of
(B1-B4): o(x,y)=/(z), P(x,y)=p(z), Q(x,y)=q(z), where
z=ax+by. One can demonstrate that (B1-B3) are
satisfied if and only if

p=e’(ca+c—2¢ o),

q=¢ '(ca-¢;—2¢ D),
where ¢; and ¢, are constants, and f(z) solves the
following equation:

h@e?+be )"+ (c;-2c, ) —(c)’ +1=0.

The simplest travelling wave solution is following:

o(xy) = % In (2-(x+y)° + (2-(x+y)°)°-1 ),
P(xy) = 2-(x+)° + (2-(x+)°)*-1,
Oxy) = 2-(x+y)’ - (2-(x+y)°)*-1 .

Example 2. Let us find a solution of (B1-B4) 1n the
following form: ¢(x,y), P=P(p(xy)), O=0(p(x.y)).
One can prove that (B1-B3) are satisfied if and only if
P=e? (cip + cy),
Q=e "’ (cip +c; + c),
where ¢(x,y) 1s a solution of the following equation:
Oxx €7 +0,, 7" + 2((c100 + c3)° + ci(c19 + c2)+1) = 0.
If ¢;=0, this equation reads as folows:
Oxc €7 +0,, 7" + C= 0,
where C=2((c,)* +1)
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