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Abstract. We derive the long-time asymptotics for the Toda shock problem

using the nonlinear steepest descent analysis for oscillatory Riemann–Hilbert
factorization problems. We show that the half-plane of space/time variables

splits into five main regions: The two regions far outside where the solution is

close to the free backgrounds. The middle region, where the solution can be
asymptotically described by a two band solution, and two regions separating

them, where the solution is asymptotically given by a slowly modulated two

band solution. In particular, the form of this solution in the separating regions
verifies a conjecture from Venakides, Deift, and Oba from 1991.

1. Introduction

The investigation of shock waves in the Toda lattice goes back at least to the
numerical works of Holian and Straub [17] and Holian, Flaschka, and McLaughlin
[16]. A theoretical investigation was later on done by Venakides, Deift, and Oba
[37] employing the Lax–Levermore method. As their main result they showed (in
the case of some special symmetric initial conditions) that in a sector |nt | < ξ′cr the
solution can be asymptotically described by a period two solution, while in a sector
|nt | > ξcr the particles are close to the unperturbed lattice. For the remaining
region ξ′cr < |nt | < ξcr the solution was conjectured to be asymptotically close to a
modulated single-phase quasi-periodic solution but this case was not solved there.
Despite some follow-up publications by Bloch and Kodama [2, 3] and Kamvissis
[19] this problem remained open. The aim of the present paper is to fill this gap.
Our method of choice will be the formulation of the inverse scattering problem as
a Riemann–Hilbert problem and an application of the nonlinear steepest descent
analysis developed by Deift and Zhou [7] based on earlier ideas from Manakov [28]
and Its [18]. For more on its history and an overview of this method applied to the
Toda lattice in the classical case of constant background we refer to [26] (cf. also
[20, 27]) and the references therein. Soon after the introduction of this method De-
ift, Kamvissis, Kriecherbauer, and Zhou [5] applied it to another steplike situation,
the Toda rarefaction problem. However, only the case t → ∞ with n fixed was
considered there. In fact, asymptotics in the (n, t) plane require an extension of the
original nonlinear steepest descent analysis based on a suitably chosen g-function
as first introduced in Deift, Venakides, and Zhou [6]. Recently this was done for the
modified Korteweg–de Vries equation by Kotlyarov and Minakov [23, 24, 31] and
for the Korteweg–de Vries equation by two of us jointly with Gladka and Kotlyarov
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[10]. However, all these works have in common that the spectra of the under-
lying Lax operators overlap and hence the associated Riemann surface is simply
connected. While Riemann–Hilbert problems on nontrivial Riemann surfaces have
a long tradition, see e.g. the monograph by Rodin [33], the nonlinear steepest
descent analysis in such situations was developed only recently by Kamvissis and
one of us [21, 22] (see also [27, 30]). It is our main novel feature in the present
paper to formulate the problem on a Riemann surface formed by combining both
spectra and working on this surface. More precisely, in the most interesting region
ξcr,1 < |nt | < ξcr we will work on a dynamically adapted surface.

To describe our results in more detail we recall that the Toda shock problem
consists of studying the long-time asymptotics of solutions of the doubly infinite
Toda lattice

ḃ(n, t) = 2(a(n, t)2 − a(n− 1, t)2),

ȧ(n, t) = a(n, t)(b(n+ 1, t)− b(n, t)),
(n, t) ∈ Z× R,(1.1)

with so called steplike shock initial profile

a(n, 0)→ a1, b(n, 0)→ b1, as n→ −∞,
a(n, 0)→ a, b(n, 0)→ b, as n→ +∞,

(1.2)

where the background Jacobi operators with constant coefficients

(Hy)(n) = ay(n− 1) + by(n) + ay(n+ 1),

(H1y)(n) = a1y(n− 1) + b1y(n) + a1y(n+ 1),
n ∈ Z,(1.3)

have spectra with the following mutual location: inf σ(H1) < inf σ(H). These
spectra can either overlap or not, and it produces essentially different types of
asymptotical behavior of the solution.

For the steplike case in the general situation σ(H1) 6= σ(H) there are two prin-
cipal cases distinguished by the conditions inf σ(H1) < inf σ(H) (the Toda shock
problem) and inf σ(H1) > inf σ(H) (the Toda rarefaction problem). As mentioned
before, the Toda shock problem was studied partly in [37] for non-overlapping back-
ground spectra of equal length, and the Toda rarefaction problem in [5] using the
Riemann–Hilbert problem approach for finite n only, as t → ∞, under the re-
striction that the spectra are again equal in length, non-overlapping, and that the
discrete spectrum is symmetric with respect to 0. An overview on the asymptotic
solution in the general situation can be found in [29].

In this study we analyze the asymptotical behavior of the solution of the Toda
shock problem in the space-time half-plane (n, t) ∈ Z×R+ in the case of arbitrary
non-overlapping background spectra supσ(H1) < inf σ(H). For t < 0, the lattice
behaves as a solution of the so called Toda rarefaction problem and will be con-
sidered in a forthcoming paper. We consider the value ξ := n

t as a slow variable
and propose the precise form of the solution in a vicinity of the rays ξ = const
as usual. We only compute the leading terms of the long-time asymptotics of the
solutions, but in all principal regions of the space-time half-plane, excluding small
transition regions. To simplify our exposition, we assume that no eigenvalues are
present in the domain R \ [inf σ(H1), supσ(H)]. They can easily be added using
the techniques developed in [27]. We suppose that there is one eigenvalue in the
gap (supσ(H1), inf σ(H)) to compare our result with the results of [37]. We will
also not provide detailed error estimates or study the case of overlapping spectra
but defer these to forthcoming papers.
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Figure 1. The case for a pure step with σ(H1) = [−5,−3] and
σ(H) = [−1, 1], without discrete spectrum.

In Fig. 1 the numerically computed solution corresponding to the initial condition
a1 = 1/2, b1 = −4, a = 1/2, and b = 0 is shown. The left picture depicts the
function n 7→ a(n, t) at a frozen time t = 90. In areas where the function seems
to be continuous this is due to the fact that we have plotted a large number of
particles (around 800) and also due to the 2-periodicity in space. So one can think
of the two lines in the middle region as the even- and odd-numbered particles of
the lattice.

Let us give a short qualitative description of our result. There are five principal
regions on the half plane (n, t) divided by rays n/t = ξ̃, with ξ̃ = ξcr,1,ξ′cr,1, ξcr,0,
ξ′cr, ξcr where ξcr,1 < ξ′cr,1 < ξcr,0 < ξ′cr < ξcr. In the domain ξ > ξcr, the solution
is asymptotically close to the constant right background solution {a, b}, and in
the domain ξ < ξcr,1 it is close to the left background {a1, b1}. In the domain
ξ′cr < ξ < ξcr, there appears a monotonous smooth function γ(ξ) ∈ R such that
γ(ξ′cr) = supσ(H1), γ(ξcr) = inf σ(H1). When the parameter ξ starts to decay from
the point ξcr, the point γ(ξ) “opens” a band [inf σ(H1), γ(ξ)] (the Whitham zone).
This interval and σ(H) can be treated as the bands of a (slowly modulated) two
band solution of the Toda lattice, which turns out to give the leading asymptotical
term of our solution with respect to large t. This two band solution is defined
uniquely by its initial divisor. We compute this divisor precisely via the values
of the right transmission coefficient on the interval [inf σ(H1), γ(ξ)] (see formulas
(5.25), (5.14), (5.26), (5.35), and (5.34) below). Thus, in a vicinity of any ray
n
t = ξ the solution of (1.1)–(1.2) is asymptotically finite-gap (Theorem 5.5). This
asymptotical term also can be treated as a function of n, t, and n

t in the whole
domain t(ξ′cr + ε) < n < t(ξcr − ε). A numerical comparison between the solution
and the corresponding asymptotic formula in this region is shown in Fig. 2. Next,
in the domains ξcr,0 < ξ < ξ′cr and ξ′cr,1 < ξ < ξcr,0, the asymptotic of the solution
of (1.1)–(1.2) is described by two finite-gap solutions. They are connected with one
and the same intervals σ(H1) and σ(H) and the initial divisors (or shifts of the
phase) do not depend on the slow variable ξ, but differ due to the presence of the
soliton. The situation in the domain ξcr,1 < ξ < ξ′cr,1 is similar to the Whitham zone
described above. There appears a monotonous smooth function γ1(ξ) ∈ R such that
γ1(ξcr,1) = supσ(H), γ1(ξ′cr,1) = inf σ(H). The finite-gap asymptotic here is again
local along the ray, and is defined by the intervals σ(H1) and [γ1(ξ), supσ(H)].

We do not study the transitional regions in vicinities of the points inf σ(H1) and
supσ(H), but one can expect the appearance of asymptotical solitons here (see [1]).
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Figure 2. Comparison between the solution (black) and the as-
ymptotic formula (gray) in the region ξ′cr < ξ < ξcr.

We emphasize that the RH problem with jumps on several disjoint intervals was first
treated rigorously in [8]. Among the results of this seminal paper was a formula for
the leading term of the asymptotics for coefficients of the respective Jacobi matrix,
given in terms of a quotient of theta functions. However, from that formula it was
hard to see that it is a finite-gap Jacobi operator, which was later shown in [14].
In contradistinction to the situation considered in [8, 14], in the present paper the
jump contour of the limiting RH problem depends on the variable ξ, which dictates
a special choice of the g-functions to replace the phase functions. We choose these
g-functions as linear combinations of Abel integrals of the second and third kind
such that we can easily control the lines where Re g = 0 (cf. Fig. 7 below). To study
the specific properties of the g-functions in detail it is convenient to use standard
properties of the associated Riemann surface, which pushed us to consider the RH
problem on the Riemann surface. We emphasize that this approach leads to quite
simple and natural asymptotic formulas for the solution of (1.1)–(1.2), which are
exact finite-gap solutions of the Toda lattice considered in a small vicinity of the
ray ξ = const.

2. Statement of the Riemann–Hilbert problems

To set the stage we describe the class of initial data which we study. Without
loss of generality, by shifting and scaling of the spectral parameter of the Jacobi
spectral equation

(2.1) (H(t)ψ)(n) := a(n− 1, t)ψ(n− 1) + b(n, t)ψ(n) + a(n, t)ψ(n+ 1) = λψ(n)

we can reduce the asymptotics of the initial data to

a(n, 0)→ 1

2
, b(n, 0)→ 0, as n→ +∞,

a(n, 0)→ d, b(n, 0)→ −c, as n→ −∞,
(2.2)

where c, d ∈ R+ are constants satisfying the conditions

(2.3) c > 1, 0 < 2d < c− 1.

The spectra of the free (background) Jacobi operators (1.3) are given now by
σ(H1) = [−c − 2d,−c + 2d] and σ(H) = [−1, 1]. We suppose that the initial
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data decay to their backgrounds exponentially fast

(2.4)

∞∑
n=0

eV n
(
|a(−n, 0)− d|+ |b(−n, 0) + c|+ |a(n, 0)− 1

2
|+ |b(n, 0)|

)
<∞,

where for a small positive ε

(2.5) coshV = max
{
c+ 2d, (1 + c)(2d)−1

}
+ 2ε.

Let a(n, t), b(n, t) be the unique solution of the Cauchy problem (1.1) with initial
condition of the type (2.2)–(2.5). It is known ([12, Lemma 3.2], [36]) that the decay
condition (2.4) is preserved by the time evolution of the Toda lattice, and therefore
for any fixed t the solution a(n, t), b(n, t) is exponentially close to the background
constant asymptotics as n→ ±∞.

The spectrum of the Jacobi operator H(t) consists of an (absolutely) continuous
part [−c−2d,−c+2d]∪[−1, 1] of two nonintersecting bands of spectra of multiplicity
one, plus possibly a finite number of eigenvalues. For simplicity we assume in
addition to (2.4) and (2.3) that

(2.6) the discrete spectrum of H(0) consists of one point λ0 ∈ (−c+ 2d,−1)

such that we can compare our results with [37], where a single soliton is present.
It is easy to extend our result to an arbitrary finite number of eigenvalues using
standard techniques [25].

2.1. Elements of scattering theory. In this paper we will use either left or right
scattering data of the operator H(t), depending on which region of the space-time
half plane we investigate, and apply the Riemann–Hilbert (RH) problem approach
in vector form (cf. [5]). To this end we recall some facts from scattering theory of
Jacobi operators with steplike backgrounds from [11]. Instead of the complex plane
with a cut along the continuous spectrum consider the spectral data of H(t) on the
upper sheet of the Riemann surface M connected with the function

(2.7) R1/2(λ) = −
√

(λ2 − 1)
(
(λ+ c)2 − 4d2)

)
,

where
√
λ = |

√
λ|e

i arg(λ)
2 , −π < arg(λ) < π, is the standard root with branch cut

along (−∞, 0]. A point on M is denoted by p = (λ,±), λ ∈ C, with (∞,±) :=∞±.
The projection onto C ∪ {∞} is denoted by π(p) = λ. The sheet exchange map is
given by p∗ = (λ,∓) for p = (λ,±). The sets

ΠU = {(λ,+) | λ ∈ C \ (σ(H1) ∪ σ(H))} ⊂M, ΠL = {p∗ | p ∈ ΠU},

are called upper, lower sheet, respectively. Denote

(2.8)
Σu = {p = (λ+ i0,+)}, Σ` = {p = (λ− i0,+)}, λ ∈ σ(H),

Σ1,u = {p = (λ+ i0,+)}, Σ1,` = {p = (λ− i0,+)}, λ ∈ σ(H1),

and Σ = Σu ∪ Σ`, Σ1 = Σ1,u ∪ Σ1,`. We consider Σ and Σ1 as clockwise oriented
contours, when looking on the upper sheet. For any function f(p) holomorphic in
a neighborhood of Γ := Σ1 ∪ Σ on ΠU and continuous up to the boundary, we
consider its value on the contour as

(2.9) f(p) = lim
p′∈ΠU→p

f(p′), p ∈ Γ.

The points p = (λ+ i0,+) and p = (λ− i0,+) are called symmetric points of Γ.
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On ΠU , introduce two new spectral variables z(p) and z1(p), with |z(p)| < 1 and
|z1(p)| < 1, by

(2.10) z(p) = λ−
√
λ2 − 1, z1(p) =

1

2d

(
λ+ c−

√
(λ+ c)2 − 4d2

)
.

These variables are different Joukovski transformations of the spectral parameter

λ =
1

2

(
z + z−1

)
= −c+ d

(
z1 + z−1

1

)
.

The functions y(λ, n) = z(p)n and y1(λ, n) = z1(p)−n are the “free exponents”
connected to the background operators H and H1, respectively.

On clos ΠU := ΠU ∪ Γ, there exist Jost solutions ψ(p, n, t) and ψ1(p, n, t) of the
equation

(2.11) H(t)φ(p, n, t) = p φ(p, n, t), p ∈ clos ΠU ,

which asymptotically look like the free solutions of the background equations,

lim
n→∞

z−n(p)ψ(p, n, t) = 1, lim
n→−∞

zn1 (p)ψ1(p, n, t) = 1, p ∈ clos ΠU .

These solutions satisfy

(2.12)
ψ(p, n, t) = ψ(p, n, t), p ∈ Σ; ψ(p, n, t) ∈ R, p ∈ R \ σ(H),

ψ1(p, n, t) = ψ1(p, n, t), p ∈ Σ1; ψ1(p, n, t) ∈ R, p ∈ R \ σ(H1).

They can be represented via the transformation operators

ψ1(p, n, t) =

−∞∑
m=n

K1(n,m, t)z1(p)−m, ψ(p, n, t) =

+∞∑
m=n

K(n,m, t)z(p)m,

where the real-valued functions K(n,m) and K1(n,m) satisfy due to (2.4)–(2.5)

K1(n,m, t) ≤ C1(n, t)e
V (n+m)

2 , m < n; K(n,m, t) ≤ C2(n, t)e−
V (n+m)

2 , m > n,

(2.13)

K1(n, n, t) = 1 +O(eV n), n→ −∞; K(n, n, t) = 1 +O(e−V n), n→ +∞.
(2.14)

Introduce two values ρj > 1, j = 1, 2, such that

(2.15) ρ1 + ρ−1
1 = (d)−1(1 + c) + 2ε, ρ2 + ρ−1

2 = 2(c+ 2d+ ε).

Let D be a domain in ΠU defined by

(2.16) D = {p ∈ ΠU : 1 < |z−1
1 (p)| < ρ1, 1 < |z−1(p)| < ρ2}.

The constants ρj are chosen in such a way that each pre-image of the circles |z(p)| =
ρ−1

2 and |z1(p)| < ρ−1
1 on ΠU , which is an ellipse, contains both Σ and Σ1. On

the other hand, ρj < V , respectively, |z−1(p)| < V , |z−1
1 (p)| < V uniformly in D.

Thus one can introduce a solution of (2.11), which is an analytical continuation of

ψ(p, n, t) (resp. ψ1(p, n, t)) to D, usually defined on Σ (resp. Σ1)

ψ̆1(p, n, t) =

−∞∑
m=n

K1(n,m, t)z1(p)m, ψ̆(p, n, t) =

+∞∑
m=n

K(n,m, t)z(p)−m.

From (2.13) and (2.14) it follows that

(2.17) 〈ψ1, ψ̆1〉(p, t) =
√

(p− c)2 − 4d2, 〈ψ, ψ̆〉(p, t) = −
√
p2 − 1, p ∈ D,
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where 〈f, g〉(p, t) = a(n − 1, t)(f(p, n − 1, t)g(p, n, t) − f(p, n, t)g(p, n − 1, t)) is
the Wronskian of two solutions of (2.1). Denote by W (p, t) = 〈ψ1, ψ〉(p, t) the
Wronskian of the Jost solutions. By (2.6), W (p, t) has on ΠU the only simple
zero at p0 = (λ0,+) and does not vanish on Σ except at possibly the edges of the
continuous spectrum ∂σ := {−c − 2d,−c + 2d} ∪ {−1, 1} = ∂σ(H1) ∪ ∂σ(H). If
W (E, t) = 0 for E ∈ ∂σ, we call the point E a resonant point. If E is a resonant
point then W (p, t) = C(t)

√
p− E(1 +o(1)) as p→ E, with C(t) 6= 0 for all t ∈ R+.

The Jost solutions satisfy the scattering relations

T (p, t)ψ1(p, n, t) = ψ(p, n, t) +R(p, t)ψ(p, n, t), p ∈ Σ,(2.18)

T1(p, t)ψ(p, n, t) = ψ1(p, n, t) +R1(p, t)ψ1(p, n, t), p ∈ Σ1,(2.19)

where T (p, t), R(p, t) (resp. T1(p, t), R1(p, t)) are the right (resp. left) transmission
and reflection coefficients. They satisfy

(2.20)
T (p, t) = T (p, t), R(p, t) = R(p, t), p ∈ Σ,

T1(p, t) = T1(p, t), R1(p, t) = R1(p, t), p ∈ Σ1,

and the identities

(2.21)
T (p, t)

T (p, t)
= R(p, t), p ∈ Σ,

T1(p, t)

T1(p, t)
= R1(p, t), p ∈ Σ1.

If the coefficients of the Jacobi operator H(t) tend to their constant asymptotics
with finite first moment (which is a more general situation than (2.4)), then the
transmission coefficients can be continued as meromorphic functions on ΠU with a
simple pole at p0 = (λ0,+), and satisfy

(2.22) T (p, t) =

√
p2 − 1

W (p, t)
, T1(p, t) =

√
(p+ c)2 − 4d2

W (p, t)
, p ∈ clos ΠU .

Moreover, T (p, t) (resp. T1(p, t)) is continuous in a vicinity of Γ = Σ ∪ Σ1 up
to the boundary, excluding possibly the points ∂σ(H1) (resp. ∂σ(H)), where a
discontinuity can appear due to the resonance. If E ∈ ∂σ(H1) (resp. E ∈ ∂σ(H)) is
the resonant point then T (p, t) = O((p−E)−1/2) (resp. T1(p, t) = O((p−E)−1/2)),
i.e., this transmission coefficient has a simple pole at such a point.

Now we observe that under condition (2.4) the reflection coefficients can be
continued in the domain D. It is natural to continue them via (2.18) and (2.19),

ψ̆(p, n, t) = T (p, t)ψ1(p, n, t)−R(p, t)ψ(p, n, t),

ψ̆1(p, n, t) = T1(p, t)ψ(p, n, t)−R1(p, t)ψ1(p, n, t),
p ∈ D,(2.23)

which is the same as to introduce them as usual via Wronskians (see (2.22), (2.17)),

R1(p, t) =
〈ψ̆1, ψ〉(p, t)
W (p, t)

, R(p, t) = −〈ψ̆, ψ1〉(p, t)
W (p, t)

.

In particular, (2.23) implies that both reflection coefficients also have simple poles
at p0. Moreover, a pole for R(p, t) (resp. R1(p, t)) at the edge points of ∂σ(H1)
(resp. ∂σ(H)) also appears in the resonance case. Thus, the following is valid:

Lemma 2.1. Let D be defined by (2.15), (2.16). Then the functions

T (p, t)ψ1(p, n, t)−R(p, t)ψ(p, n, t) and T1(p, t)ψ(p, n, t)−R1(p, t)ψ1(p, n, t)

are holomorphic in D and continuous up to the boundary Γ = Σ ∪ Σ1.
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Note that the time evolution of the scattering data preserves its form after ana-
lytical continuation. Set

φ(p) =
1

2
(z(p)− z−1(p)), φ1(p) = d(z−1

1 (p)− z1(p)),

and denote

β−1(t) =
∑
n∈Z

(ψ(p0, n, t))
2, β−1

1 (t) =
∑
n∈Z

(ψ1(p0, n, t))
2, β1 = β1(0), β = β(0),

and T (p) = T (p, 0), T1(p) = T1(p, 0), R(p) = R(p, 0), R1(p) = R1(p, 0), then we
have

(2.24)

T (p, t) = T (p)et(φ(p)+φ1(p)), T1(p, t) = T1(p)et(φ(p)+φ1(p)), p ∈ ΠU ,

R(p, t) = R(p)e2tφ(p), R1(p, t) = R1(p)e2tφ1(p), p ∈ D,

β(t) = βe2tφ(p0), β1(t) = β1e2tφ1(p0).

2.2. Statement of the Riemann-Hilbert problem. Let m(p) = (m1(p),m2(p))
be a vector-valued function on the Riemann surface M, which has a jump on the
contour Γ, oriented clockwise. We will denote

m+(p) = lim
ζ∈ΠU→p∈Γ

m(ζ), m−(p) = lim
ζ∈ΠL→p∈Γ

m(ζ)

at the same point p ∈ Γ. In general, for an oriented contour Σ̂ on M, and for a
function f(p) on this surface, the value f+(p) (resp. f−(p)) will denote the non-

tangential limit of the vector function f(ζ) as ζ → p ∈ Σ̂ from the positive (resp.

negative) side of Σ̂, where the positive side is the one which lies to the left as one
traverses the contour in the direction of its orientation.

We say that the vector-function m satisfies

• the symmetry condition if

(2.25) m(p∗) = m(p)σ1; σ1 :=

(
0 1
1 0

)
;

• the normalization condition if there exists

lim
p→∞±

m(p) = (m1(∞±),m2(∞±))

and

(2.26) m1(∞±) ·m2(∞±) = 1, m1(∞±) > 0.

On ΠU define two vector-valued functionsm(p) = m(p, n, t) andm1(p) = m1(p, n, t):

m(p) =
(
T (p, t)ψ1(p, n, t)zn(p), ψ(p, n, t)z−n(p)

)
,

m1(p) =
(
T1(p, t)ψ(p, n, t)z−n1 (p), ψ1(p, n, t)zn1 (p)

)
.

(2.27)

They are considered as functions of the variable p, and n and t are parameters.

Lemma 2.2. ([11]) The functions m(p) and m1(p) have the following asymptotic
behavior as p→∞+:

m(p) =
(
A(n, t)

(
1− B(n− 1, t)

λ

)
,

1

A(n, t)

(
1 +

B(n, t)

λ

))
+O

( 1

λ2

)
,

m1(p) =
(
A1(n, t)

(
1− B1(n+ 1, t)

λ

)
,

1

A1(n, t)

(
1 +

B1(n, t)

λ

))
+O

( 1

λ2

)
,

(2.28)
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where

A(n, t) =

∞∏
j=n

2a(j, t), B(n, t) = −
∞∑

j=n+1

b(j, t),

A1(n, t) =

n−1∏
j=−∞

a(j, t)

d
, B1(n, t) = −

n−1∑
j=−∞

(c+ b(j, t)).

(2.29)

Extend the functions m and m1 to ΠL by the symmetry condition, m(p∗) =
m(p)σ1, m1(p∗) = m1(p)σ1. Evidently, this extension produces jumps along Γ.
To apply the nonlinear steepest descent method we have to describe the jumps
along Γ by matrices depending on a large parameter t and on a parameter ξ = n

t ,
which does not change much (the slow variable). To this end, introduce the phase
functions Φ(p) = Φ(p, ξ) and Φ1(p) = Φ1(p, ξ) on ΠU ,

(2.30) Φ1(p) = d
(
z−1

1 (p)−z1(p)
)
−ξ log z1(p), Φ(p) =

1

2

(
z(p)−z−1(p)

)
+ξ log z(p),

and continue them as odd functions to ΠL

(2.31) Φ(p∗) = −Φ(p), Φ1(p∗) = −Φ1(p).

This corresponds to the continuation z(p∗) = z−1(p) and z1(p∗) = z−1
1 (p), which

is natural for the Joukovski transformation. With this continuation, z and z1 are
not holomorphic on M; z(p) has a jump on Σ1 and z1(p) has a jump on Σ. In
particular,

(2.32) z1(p) = z1(p) = z−1
1 (p∗) ∈ R, p ∈ Σ,

and z(p) is real-valued with the same type of jump on Σ1. Denote

(2.33) χ(p) = − lim
p′∈ΠU→p∈Σ

T1(p′, 0)T (p′, 0), p ∈ Γ.

We observe from (2.22) that

(2.34) χ(p) = i|χ(p)|, p ∈ Γu, χ(p) = −i|χ(p)|, p ∈ Γ`,

(cf. (2.8)), and therefore χ(p) = −χ(p) for p ∈ Γ.

Theorem 2.3. Suppose that the initial data of the Cauchy problem (1.1) satisfy
(2.2)–(2.5). Let {R(p), p ∈ Σ; R1(p), p ∈ Σ1; χ(p), p ∈ Γ; p0 = (λ0,+), β1, β2}
be the scattering data of H(0). Then the vector-valued functions defined in (2.27),
(2.25) solve the following Riemann–Hilbert problems:

I. The function m(p) = (m1(p),m2(p)) (resp. m1(p) = (m1
1(p),m1

2(p))) is a
meromorphic function on M \ Γ with a simple pole at p0 for m1(p) (resp.
m1

1(p)) and a simple pole at p∗0 for m2(p) (resp. m1
2(p)). It is continuous up to

Γ except at the points (−c−2d,±) and (−c+2d,±) (resp. (1,±) and (−1,±)),
where m1(p) (resp. m1

1(p)) admits a square root singularity O((p − E)−1/2)
from the upper sheet, and m2(p) (resp. m1

2(p)) from the lower sheet.
II. They satisfy the jump conditions m+(p) = m−(p)v(p), m1

+(p) = m1
−(p)v1(p),

where

(2.35) v(p) =



(
0 −R(p)e−2tΦ(p)

R(p)e2tΦ(p) 1

)
, p ∈ Σ,(

χ(p)et(Φ+(p)−Φ−(p)) 1

1 0

)
, p ∈ Σ1,
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(2.36) v1(p) =



(
0 −R1(p)e−2tΦ1(p)

R1(p)e2tΦ1(p) 1

)
, p ∈ Σ1,

(
χ(p)et(Φ1,+(p)−Φ1,−(p)) 1

1 0

)
, p ∈ Σ.

III. They satisfy the pole conditions

Resp0 m(p) = (Qm2(p0), 0), Resp∗0 m(p) = (0, Qm1(p∗0))(2.37)

Resp0
m1(p) = (Q1m

1
2(p0), 0), Resp∗0 m

1(p) = (0, Q1m
1
1(p∗0)),(2.38)

where

Q = Q(t) =
√
p2

0 − 1β2e2tΦ(p0), Q1 = Q1(t) =
√

(p0 + c)2 − 4d2β1e2tΦ1(p0).

IV. They satisfy the symmetry and normalization conditions.

Proof. Use (2.12), (2.18), (2.19), (2.20), (2.21), (2.24), (2.33), (2.31), (2.32), (2.25),
and (2.26). Condition I takes into account possible resonances, which produce
poles of the transmission coefficients on the Riemann surface at the respective
branch points. �

Lemma 2.4. Each Riemann-Hilbert problem I–IV has a unique solution.

Proof. Since the RH problems for m and m1 can be easily transformed into each
other by a simple conjugation it suffices to study the uniqueness of m. Let f =
(f1, f2) and g = (g1, g2) be two solutions satisfying I, (2.35), (2.37), and IV. For
convenience we consider them as in Section 8 as functions on the Riemann surface
M̂ of

√
λ2 − 1. The contour Σ1 transforms to two contours: the interval I1 =

[−c − 2d,−c + 2d] on the upper sheet of M̂ oriented in positive direction, and I∗1
on the lower sheet with negative orientation, with jump matrix

v̂(p) =



(
1 0

χ(p)e2tΦ(p) 1

)
, p ∈ I1,

σ1(v̂(p∗))−1σ1, p ∈ I∗1 ,
v(p), p ∈ Σ.

Let

S(p) =

(
f1(p) f2(p)
g1(p) g2(p)

)
, p ∈ M̂,

then the scalar function s(p) = detS(p) has no jump since det v(p) = 1. Moreover,

s(p) has no pole at the eigenvalue p0 and is holomorphic on M̂ except at four points

(−c − 2d,±), (−c + 2d,±) (these are no longer branch points on M̂) in the case
of resonances, where s(p) = O((p + c ± 2d)−1/2). Since s(p) is bounded at ∞±,
then s(p) ≡ const by Liouville’s theorem. The symmetry condition (2.25) implies
s(p) + s(p∗) = 0, hence 2s(1) = 0 and s(p) ≡ 0.

Therefore f(p) = c(p)g(p), where c(p) is a scalar function without jumps on M̂,
and limp→∞± c(p) = 1 by the normalization condition. Hence to show uniqueness,
it suffices to show that the associated vanishing problem, where the normalization
condition (2.26) is replaced by the condition that the first component of m(∞+)
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vanishes, has only the trivial solution. To this end we introduce the meromorphic
differential

dΩ(p) =
i dλ

±
√
λ2 − 1

, p = (λ,±) ∈ M̂,

with simple poles at ∞±. A brief inspection shows that dΩ is positive on Σ and
i−1dΩ is positive in I1.

Let m̂ be a solution of this vanishing problem and let C be the closed contour
from Fig. 12 oriented counterclockwise. Denote by m̂† the adjoint (transpose and
complex conjugate) of a vector/matrix. Since there is no residue at ∞+ we obtain
0 =

∫
C m̂(p)m̂†(p∗)dΩ(p), that is,

2πi Resp0

(
m̂(p)m̂†(p∗)

) i√
p2

0 − 1
=

=

∫
I1

m̂+(p)m̂†+(p∗)dΩ(p)−
∫
I1

m̂−(p)m̂†−(p∗)dΩ(p) +

∫
Σ

m̂+(p)m̂†−(p)dΩ(p)

=

∫
I1

(
m̂+(p)σ1m̂

†
−(p)− m̂−(p)σ1m̂

†
+(p)

)
dΩ(p) +

∫
Σ

m̂+(p)m̂†−(p)dΩ(p).

Using the pole condition (2.37), the jump conditions

m̂1,+ − m̂1,− = χe2tRe Φm̂2,−, m̂2,+ = m̂2,−, on I1,(2.39)

m̂2,+ = m̂2,− −Re−2tΦm̂1,−, m̂1,+ = Re2tΦm2,−, on Σ,(2.40)

together with χ(p) = i|χ(p)|, p ∈ I1, and Re Φ(p) = 0, p ∈ Σ, imply

0 = 2

∫
I1

|χ(p)|e2tRe Φ(p)|m̂2,−(p)|2idΩ(p) +

∫
Σ

|m̂2,−(p)|2dΩ(p)

+ 4πβ2|m̂2(p0)|2e2tΦ(p0) + 2i Im

∫
Σ

R(p)e2tΦ(p)m̂2,−(p)m̂1,−(p)dΩ(p).

Since the first three summands are positive and the last one is purely imaginary,
this shows m̂2,−(p) = 0 for p ∈ I1 ∪ Σ. By (2.39) m̂2,+(p) = m̂2,−(p) = 0 for
p ∈ I1 and so m̂1 also has no jump along I1. In particular, m̂ is holomorphic in a
neighborhood of I1 and consequently vanishes on the upper sheet. By symmetry
it also vanishes on the lower sheet which finally shows m̂(p) ≡ 0 and establishes
uniqueness. �

Our aim is to reduce these RH problems to model problems which can be solved
explicitly. To this end we record the following well-known result for easy reference.

Lemma 2.5 (Conjugation). Let m̃ be a solution of the RH problem m̃+(p) =

m̃−(p)ṽ(p), p ∈ Σ̃, on a Riemann surface M̃ which satisfies the symmetry and

normalization conditions. Let Σ̂ be a contour on M̃ with the same orientation as Σ̃
on the common part of these contours and suppose that Σ̂ and Σ̃ contain with each
point p also p∗. Let D be a matrix of the form

D(p) =

(
d(p)−1 0

0 d(p)

)
= [d(p)]−σ3 , σ3 =

(
1 0
0 −1

)
,

where d : M̃ \ Σ̂ → C is a sectionally analytic function with d(p) 6= 0 except for a

finite number of points on Σ̃. Set

(2.41) m̂(p) = m̃(p)D(p),
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then the jump matrix of the problem m̂+ = m̂−v̂ is

v̂ =



(
ṽ11 ṽ12d

2

ṽ21d
−2 ṽ22

)
, p ∈ Σ̃ \ (Σ̃ ∩ Σ̂),(

ṽ11d
−1
+ d− ṽ12d+d−

ṽ21d
−1
+ d−1
− ṽ22d

−1
− d+

)
, p ∈ Σ̃ ∩ Σ̂,(

d−1
+ d− 0

0 d−1
− d+

)
, p ∈ Σ̂ \ (Σ̃ ∩ Σ̂).

If d satisfies d(p∗) = d(p)−1 for p ∈ M̃ \ Σ̂, then the transformation (2.41) respects
the symmetry condition (2.25).

In addition to this Lemma we will apply the technique of so called g-functions in
a form proposed in [23]. In contradistinction to [23] we work on the Riemann sur-
face, and these g-functions are in fact Abel integrals on modified Riemann surfaces
which are “slightly truncated” with respect to M and depend on the parameter ξ.
These Abel integrals approximate the phase functions at infinity up to an additive
constant, and transform the jump matrices in a way that allows us to factorize
them and to get asymptotically constant matrices on contours. The respective RH
problem with constant jump is called the model problem and will be solved explic-
itly for our case. In the next section we rigorously study the analytical properties
of the g-function which approximates the phase Φ in one of the domains, and then
list analogous properties of the other g-functions in Section 6.

3. g-function: existence and properties

3.1. Boundaries of regions. We start with properties of the phase functions
which would be desirable to be “inherited” by the g-functions. In accordance with
(2.30) and (2.31) we represent Φ(p) and Φ1(p) via the integrals

(3.1) Φ(p) = −
∫ p

1

λ+ ξ√
λ2 − 1

dλ, Φ1(p) =

∫ p

−c+2d

λ+ c+ ξ√
(λ+ c)2 − 4d2

dλ.

Evidently (2.31) is valid. The function Φ(p) has a jump along the contour Σ1 and
no jump on Σ, respectively, Φ1 has a jump along Σ and no jump on Σ1. For p ∈ ΠU ,

(3.2)
Φ±(p) = ±iπξ + Re Φ(p), for π(p) ∈ (−∞,−1],

Φ1,±(p) = ∓iπξ + Re Φ1(p), for π(p) ∈ (−∞,−c− 2d],

with the natural symmetry on the lower sheet. The jumps of the phase func-
tions along these intervals are equal to 2πin

t up to a sign, which implies that

et(Φ1,+(p)−Φ1,−(p)) = 1 along contours on ΠU and ΠL with projection on (−∞,−c−
2d], and et(Φ+(p)−Φ−(p)) = 1 along two contours with projection on (−∞,−1]. The
phase functions have the following asymptotic behavior as p→∞+

Φ(p, ξ) = −p− ξ log p− ξ log 2 +
1

2p
+O(p−2),

Φ1(p, ξ) = p+ ξ log p+ c− ξ log d+
1

p
(ξc− 2d2) +O(p−2).

(3.3)

We observe that the graph Re Φ(p, ξ) = 0 (resp. Re Φ1(p, ξ) = 0) on clos(ΠU )
consists of two curves. One of them is the contour Σ (resp. Σ1), and the other one
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crosses the real axis at the point η (resp. η1). If there is no confusion, we consider
the real numbers η, η1, and ξ as points on ΠU when necessary. In particular, to
evaluate the point η observe that for ξ > 1, the function Φ(p, ξ) maps the upper
half-plane C+ ⊂ ΠU conformally to the domain that lies below the polygon in the
right picture of Fig. 3. The line Re Φ(p, ξ) = 0 starts at η < −ξ for which

(3.4) Φ(η, ξ) = Φ(−1, ξ).

r−ξ -r
−1

r
1

rξ.....
.....
......
.....
.....
......
.....
.....
.....
.....
..... Re Φ = 0

r
η

Φ(p)
→ �rΦ(−ξ) r

Φ(η)

6rΦ(−1)

r0 = Φ(1)�

............................................?
Re Φ = 0

−iR+

Figure 3. Conformal map Φ(p, ξ) for ξ > 1 and p ∈ ΠU , Im p ≥ 0.

Fig. 4 demonstrates that the curve Re Φ(p, ξ) = 0 starts at η = −ξ when ξ ∈ [−1, 1].

- r
−1

r
1

.....

.....

......

....

....

.....

.....

.....

.....

..... Re Φ = 0

r
−ξ

Φ(p)
→ rΦ(−ξ)

rr�Φ(1) = 0

Φ(−1) �

............................................?
Re Φ = 0

−iR+

Figure 4. Case ξ ∈ (−1, 1)

The signature table on M for Φ(p) in the case η ∈ I1 = [−c − 2d,−c + 2d] is
given in Fig. 5. We observe that as the parameter ξ decreases from +∞ to −∞,
the point η increases from −∞ to +∞ and the point η1 decreases from +∞ to −∞.
One can expect from the signature table in Fig. 5 that for ξ = n

t > ξcr, where

On ΠU :

+

+ −

−
.

....................................

..................................

.................................

................................

................................

.................................

..................................

....................................

rη
Re Φ = 0

I1 Σ

Re Φ = 0

On ΠL:

−

− +

+

.

....................................

..................................

.................................

................................

................................

.................................

..................................

....................................

rη∗
Re Φ = 0

I∗1 Σ

Re Φ = 0

Figure 5. Signature table of Re Φ(p) for η ∈ I1
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ξcr corresponds to η = −c− 2d, the asymptotical behavior of the solution of (1.1),
(2.2)–(2.5) will be close to the coefficients of the right initial background operator
H. Respectively, if ξ < ξcr,1, where ξcr,1 corresponds to η1 = 1, the solution
will be close to the coefficients of the left background operator H1 (see Section 8).
According to (3.4), ξcr is the solution of the equation Φ(−c − 2d, ξ) = Φ(−1, ξ).
From (3.1) we obtain

(3.5) ξcr =
(
(c+ 2d)2 − 1

)1/2
log−1

(
c+ 2d+ ((c+ 2d)2 − 1)1/2

)
.

Here the positive value of
√
· is used. In turn, the point ξcr,1 is the solution of the

equation Φ1(1, ξ) = 0, that is

(3.6) ξcr,1 =
(
(1 + c)2 − 4d2

)1/2(
log 2d− log

(
1 + c+ ((1 + c)2 − 4d2)1/2

))−1

.

We observe that ξcr,1 < −2d and ξcr > 1, therefore ξcr,1 < ξcr. To determine the
parameters which distinguish four other regions of the (n, t) half plane where the
solution has different types of finite-gap asymptotical behavior, we introduce the
points ν1, ν2 ∈ (−c+ 2d,−1) such that

(3.7)

∫ −1

−c+2d

(λ− ν2)(λ+ c− 2d)

R1/2(λ)
dλ = 0,

∫ −1

−c+2d

(λ− ν1)(λ+ 1)

R1/2(λ)
dλ = 0.

Explicitely one obtains

(3.8) ν1 =
(c− 2d)I1 + I2

(c− 2d)I0 + I1
, ν2 =

I1 + I2

I0 + I1
, I` =

∫ −1

−c+2d

λ`

R1/2(λ)
dλ,

where the integrals I` can be explicitly evaluated in terms of Jacobi elliptic functions
[4] yielding

I0 = CK(k), k =

√
c2 − (2d+ 1)2

c2 − (1− 2d)2
, C =

2√
c2 − (1− 2d)2

I1 = C

(
4dΠ

(1− c+ 2d

1− c− 2d
, k
)
− (c+ 2d)K(k)

)
,

I2 =
C

2
(4dK(k) + (1− c− 2d)(1 + c− 2d)E(k))− cI1.

Set

(3.9) ξ′cr = −ν2 − 2d, ξ′cr,1 = −ν1 − c+ 1.

Since ν1, ν2 ∈ (−c+ 2d,−1), then |ν2 − ν1| < −1 + c− 2d. Therefore, ξ′cr,1 < ξ′cr.
To compute the critical value ξcr,0 which corresponds to the eigenvalue λ0, in-

troduce two functions µ1(ξ) < µ2(ξ) uniquely defined by (7.1) for ξ ∈ (ξ′cr,1, ξ
′
cr).

Observe that for ξ = ξ′cr, we have µ1 = −c + 2d and µ2 = ν2. Respectively, for
ξ = ξ′cr,1, µ2 = −1 and µ1 = ν1. Since λ0 ∈ (−c + 2d,−1), the parameter ξcr,0 is
defined by

(3.10)

∫ −1

λ0

(λ− µ1)(λ− µ2)

R1/2(λ)
dλ = 0,

and therefore ξ′cr,1 < ξcr,0 < ξ′cr. In fact, the following inequalities are valid

(3.11) ξcr,1 < ξ′cr,1 < ξcr,0 < ξ′cr < ξcr,

where the parameters ξcr are uniquely defined by (3.5)–(3.10) and (7.1). These in-
equalities define three regions with different g-functions. In the region ξ ∈ (ξ′cr, ξcr)
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(resp. ξ ∈ (ξcr,1, ξ
′
cr,1)), a g-function will be a good approximation for the phase

function Φ (resp. Φ1), in the middle region a g-function will approximate both
phase functions up to the sign. More precisely, in the right (resp. left) region we
study the RH problem associated with the right (resp. left) scattering data and
in the middle we study both problems and compare solutions. The inequalities
(3.11) can be verified directly, but we get them as a byproduct of existence of such
g-functions.

3.2. Definition and properties of the g−function in the region (ξ′cr, ξcr).
With the boundaries of the domains in place, we start by introducing the g-function
for ξ′cr < ξ < ξcr. Consider two real-valued functions, γ(ξ) ∈ (−c − 2d,−c + 2d)
and µ(ξ) ∈ (−ξ,−1), such that the following two conditions are satisfied:

(3.12) c+ 2d+ γ(ξ) + 2µ(ξ) = −2ξ,

and

(3.13)

∫ −1

γ(ξ)

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
dλ = 0,

where

(3.14) R1/2(λ, γ) := −
√

(λ2 − 1)(λ+ c+ 2d)(λ− γ).

Evidently, we can always choose two points γ ∈ (−c−2d,−c+2d) and µ(γ) ∈ (γ,−1)
such that (3.13) holds true. Hence our aim is to show that in the given region, (3.12)
can also be satisfied.

Lemma 3.1. For any ξ ∈ (ξ′cr, ξcr) the following is valid:

(i) There exist points γ(ξ) ∈ (−c− 2d,−c+ 2d) and µ(ξ) ∈ (γ(ξ),−1) satisfying
(3.12)–(3.13), they can be chosen uniquely.

(ii) There exist points ν1(ξ), h(ξ) ∈ (γ(ξ),−1) and ν2(ξ) ∈ R such that

(3.15)
(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
= Ω(λ, ξ) + ξω(λ, ξ),

where

Ω(λ, ξ) =
(λ− ν1(ξ))(λ− ν2(ξ))

R1/2(λ, γ(ξ))
, ω(λ, ξ) =

λ− h(ξ)

R1/2(λ, γ(ξ))

with

(3.16) (a)

∫ −1

γ(ξ)

Ω(λ, ξ)dλ = 0; (b)

∫ −1

γ(ξ)

ω(λ, ξ)dλ = 0,

and

(3.17) Ω(λ, ξ) = −1 +O(λ−2), ω(λ, ξ) = − 1

λ
+O(λ−2), as λ→∞.

(iii) The following formula is valid

(3.18)
∂

∂ξ

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
= ω(λ, ξ).

(iv) The point γ(ξ) moves continuously to the right from γ(ξcr) = −c − 2d to
γ(ξ′cr) = −c+ 2d as ξ decreases.
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This Lemma is proved in Appendix A.
Now, let M(ξ) be the Riemann surface of the function (3.14), and denote by

ΠU (ξ) and ΠL(ξ) its upper and lower sheets. Set I(ξ) := [γ(ξ),−1] and I2 :=
(−∞,−c−2d], and consider these intervals as contours on ΠU (ξ) oriented in positive
direction.

ΠU
r

−c− 2d
r

γ(ξ)
-
I(ξ) r

−1
r

1

ΠL
r r �

I∗(ξ) r r
.

................................................................................................................. ..................................................................................................................................................................................................................

.

................................................................................................................. ..................................................................................................................................................................................................................

Figure 6. The Riemann surface M(ξ)

Let I∗(ξ) and I∗2 be the respective contours on ΠL(ξ) with negative direction.
Denote D(ξ) := M(ξ) \ (I(ξ) ∪ I∗(ξ) ∪ I2 ∪ I∗2 ) and for p ∈ ΠU (ξ)∩D(ξ), introduce
the function

(3.19) g(p) := g(p, ξ) =

∫ p

1

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
dλ

and continue it as an odd function to the lower sheet,

(3.20) g(p∗) = −g(p).

Then g is a singe-valued function on D(ξ). By (3.12), it has the asymptotical
behavior

(3.21) Φ(p, ξ)− g(p, ξ) = K(ξ)− 2k(ξ)− 1

2p
+O(p−2) as p→∞+,

where k(ξ) is the real-valued coefficient for the term of order 1
p in the expansion of

g(p, ξ) with respect to large p ∈ ΠU (ξ), and

(3.22) K(ξ) = lim
λ→+∞

∫ λ

1

(
(x− µ(ξ))

√
x− γ(ξ)√

(x2 − 1)(x+ c+ 2d)
− x+ ξ√

x2 − 1

)
dx

is a real constant.
Lemma 3.1, (ii)–(iii), demonstrates an essential property of the g-function. It

is an Abel integral on the Riemann surface M(ξ) which is represented as a linear
combination of the normalized Abel integrals of the second and third kind, see
Section 5 for details. Both Abel integrals of the second and third kind depend on
the parameter ξ, but (3.18) shows that the derivative of the g-function with respect
to ξ can be expressed in terms of the Abel integral of the third kind only. Another
important property of the g-function is depicted in Fig. 7.
We observe that the curve Re g = 0 crosses the real axis namely at the branch point
γ(ξ), which allows us to control the signature of the real part more accurately. The
signature table for Re g has opposite signs on the lower sheet due to (3.20).

To describe the jumps of g(p, ξ) on I(ξ) ∪ I∗(ξ) ∪ I2 ∪ I∗2 , denote∫ γ(ξ)

−c−2d

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ+ i0, γ(ξ))
dλ = iB(ξ),

∫ 1

−1

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ+ i0, γ(ξ))
dλ = iB′(ξ),
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Figure 7. Sign of Re g on ΠU (ξ)

where the integration is taken on ΠU (ξ). Abbreviate Γ(ξ) := Σ1(ξ) ∪ Σ, where
Σ1(ξ) is the contour on M(ξ) along the interval [−c− 2d, γ(ξ)], oriented clockwise.

Lemma 3.2. The function g(p) satisfies the following properties:

g(p, ξ) = −g(p, ξ) ∈ iR, p ∈ Γ(ξ),(3.23)

et(g+(p,ξ)−g−(p,ξ)) = e2itB(ξ), p ∈ I(ξ) ∪ I∗(ξ),(3.24)

et(g+(p,ξ)−g−(p,ξ)) = 1, p ∈ I2 ∪ I∗2 .(3.25)

Proof. Property (3.23) follows from (3.13). Moreover, it is evident that

g+(p, ξ)− g−(p, ξ) = −2iB′(ξ), for p ∈ I(ξ) ∪ I∗(ξ),(3.26)

g+(p, ξ)− g−(p, ξ) = −2i(B +B′)(ξ), for p ∈ I2 ∪ I∗2 .(3.27)

Let Cρ be a circle with radius ρ and clockwise orientation enclosing the interval
[−c− 2d, 1] on the upper sheet. By (3.13),

P (ξ) :=

∮
Cρ

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
dλ = 2i(B(ξ) +B′(ξ)).

On the other hand,

P (ξ) = 2πi Res∞+

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
= −2πiξ,

due to (3.3) and (3.12), which implies (3.21). Hence

(3.28) B(ξ) +B′(ξ) = −πξ,

which justifies (3.27). Since ξ = n
t , we obtain tP (ξ) = 2πin and thus (3.25). We

also replace the jump (3.26) by the jump

g+(p, ξ)− g−(p, ξ) = 2iB(ξ) + 2πiξ, p ∈ I(ξ) ∪ I∗(ξ),

from which (3.24) follows. �

4. Reduction to the model problem in the domain ξ′cr < ξ < ξcr

In this section we perform four basic conjugation/deformation steps which allow
us to transform the initial RH problem to an equivalent RH problem with a jump
matrix close to a constant matrix for large t, except for neighborhoods of the points
−c − 2d and γ(ξ). Up to a natural symmetry these steps will be the same in all
domains under consideration, and all of them are invertible. Moreover, each step
preserves the symmetry condition (2.25) and the normalization condition (2.26).
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Let m(p) be the solution of the RH problem described in Theorem 2.3, considered
for the values ξ′cr < ξ < ξcr.
Step 1. Let M(ξ) be the Riemann surface introduced in Subsection 3.2 and consider
m(p) as a function on M(ξ). Using the symmetry property (2.25) we rewrite the
initial RH problem as a problem on M(ξ) with complementary jumps along the
contours [γ,−c+2d] = I3(ξ) ⊂ ΠU (ξ) oriented from left to right, and I∗3 (ξ) ⊂ ΠL(ξ),
oriented from right to left. The function

χ(p) = − lim
p′∈ΠU→p∈Σ1,u

T1(p′, 0)T (p′, 0),

is considered as a function on I3(ξ). Respectively, χ(p) = −χ(p∗) for p ∈ I∗3 (ξ).
Thus we get an equivalent holomorphic RH problem on M(ξ) for m(1)(p) = m(p):
to find a meromorphic function on M(ξ) \ (Σ1(ξ) ∪ I3(ξ) ∪ I∗3 (ξ) ∪ Σ2), satisfying

conditions (2.37), (2.25), (2.26), and the jump condition m
(1)
+ (p) = m

(1)
− (p)v(1)(p),

where

(4.1) v(1)(p) =



(
χ(p)et(Φ+(p)−Φ−(p)) 1

1 0

)
, p ∈ Σ1(ξ),(

1 0

χ(p)e2tΦ(p) 1

)
, p ∈ I3(ξ),

σ1(v(1)(p∗))−1σ1, p ∈ I∗3 (ξ),

v(p), p ∈ Σ.

Step 2. Factorize the jump matrix v(1)(p) on Σ using Schur complements,

v(1)(p) =

(
1 −R(p)e−2tΦ(p)

0 1

)(
1 0

R(p)e2tΦ(p) 1

)
.

r
−c− 2d

r
γ(ξ)

Σ1(ξ)
-� r

−c+ 2d

I4(ξ)
- r

y
r r
−1 1

Σ(ξ)
-�.
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Figure 8. Contour deformation for m(1)(p) on ΠU

Let y = y(ξ), γ < y < −c+2d, be the midpoint of I3(ξ) and let Ω(ξ) be a domain
on the upper sheet as in Fig. 8, inside the domain D given by (2.16). Recall that
the reflection coefficient can be continued analytically inside D, and therefore to
Ω(ξ), and has a pole at p0. We define R(p) = R(p∗) for p ∈ Ω∗(ξ). Set

(4.2) m(2)(p) = m(1)(p)



(
1 0

−R(p)e2tΦ(p) 1

)
, p ∈ Ω(ξ),(

1 −R(p∗)e−2tΦ(p)

0 1

)
, p ∈ Ω∗(ξ),

I, else.
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This vector has no jump along Σ. Instead it has jumps along the contours C(ξ)
and C∗(ξ), which are oriented clockwise. Taking into account that R(p, t)z2n =
R(p)e2tΦ(p), and (2.27), Lemma 2.1, we conclude that the components of m(2)(p)
have no poles at p0 and p∗0. Moreover, in the case of a resonance at π(p) = −c+ 2d,

the first component m
(2)
1 (p) has no singularity at (−c+ 2d,+) since by (2.27) and

Lemma 2.1 we have

lim
p→−c+2d

m
(2)
1 (p) = lim

p→−c+2d

(
m1(p)−R(p)e2tΦ(p)m2(p)

)
= const <∞.

The same is true for the second component of m(2)(p) at (−c+2d,−). Thus, m(2)(p)
is the unique solution of the following RH problem: to find a holomorphic function
on M(ξ) \ (Σ1(ξ) ∪ I3(ξ) ∪ I∗3 (ξ) ∪ C(ξ) ∪ C∗(ξ)), continuous up to the boundary
(except possibly at −c−2d, where poles are admissible for one of the components),

which satisfies the jump m
(2)
+ (p) = m

(2)
− (p)v(2)(p) with

(4.3) v(2)(p) =



(
χ(p)et(Φ+(p)−Φ−(p)) 1

1 0

)
, p ∈ Σ1(ξ),(

1 0

χ(p)e2tΦ(p) 1

)
, p ∈ I4(ξ),(

1 χ(p)e−2tΦ(p)

0 1

)
, p ∈ I∗4 (ξ),(

1 0

−R(p)e2tΦ(p) 1

)
, p ∈ C(ξ),(

1 −R(p∗)e−2tΦ(p)

0 1

)
, p ∈ C∗(ξ),

and standard normalization and symmetry conditions.
Here I4(ξ) := [γ(ξ), y(ξ)] ⊂ I3(ξ) with the same orientation as I3(ξ). Orientation

on I∗4 (ξ) is preserved from I∗3 (ξ). Note that the jump matrix on I3(ξ) \ I4(ξ) (resp.
I∗3 (ξ) \ I∗4 (ξ)) is equal to I, because the lower (resp. upper) element of the jump
matrix vanishes due to the identity (cf. [10])

(4.4) R1(p)−R(p) + χ(p) = 0.

Step 3. Denote

(4.5) d(p) = et(Φ(p)−g(p)),

where g(p) = g(p, ξ) is defined by (3.19), and set

(4.6) m(3)(p) = m(2)(p)[d(p)]−σ3 .

Lemma 2.5 is applicable for this transformation by (3.20), (2.31). Applying Lemma 3.2
we obtain that the vector functionm(3)(p) solves the following RH problem on M(ξ):
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m
(3)
+ (p) = m

(3)
− (p)v(3)(p), where

(4.7) v(3)(p) =



(
χ(p) e−2tg(p)

e2tg(p) 0

)
, p ∈ Σ1(ξ),(

e2itB 0

0 e−2itB

)
, p ∈ (I(ξ) ∪ I∗(ξ)) \ (I4(ξ) ∪ I∗4 (ξ)),(

e2itB 0

χ(p)e2tRe g(p) e−2itB

)
, p ∈ I4(ξ),(

e2itB χ(p)e−2tRe g(p)

0 e−2itB

)
, p ∈ I∗4 (ξ),(

1 0

−R(p)e2tg(p) 1

)
, p ∈ C(ξ),(

1 −R(p∗)e−2tg(p)

0 1

)
, p ∈ C∗(ξ).

Note that m(∞±) = m(2)(∞±), but the conjugation of Step 3 changes this value
due to (3.21),

(4.8) m(3)(∞+) = m(∞+)

(
e−tK(ξ) 0

0 etK(ξ)

)
, m(3)(∞−) = m(3)(∞+)σ1.

Note that m(3) still obeys (2.26) and that K(ξ) is defined by (3.22). Moreover, the
symmetry condition is preserved as well.

Step 4. Our next conjugation step deals with the factorization of the jump matrix
on Σ1(ξ). Consider the following scalar conjugation problem:

Find a bounded holomorphic function F (p) on M(ξ) \ (Σ1(ξ)∪ I(ξ)∪ I∗(ξ)) with
F (p∗) = F−1(p), real-valued at ∞±, and satisfying the jump conditions

(4.9) F+(p) = F−(p)

{
|χ(p)|, p ∈ Σ1(ξ),

ei∆(ξ), p ∈ I(ξ) ∪ I∗(ξ).

The value of the real constant ∆(ξ) will be specified later in (5.14). As is shown in
Lemma 5.2 below this problem is uniquely solvable. Given the solution of (4.9) and
taking into account that g has no jump on Σ1(ξ) and χ(p) = −i|χ(p)| for p ∈ Σ1,`(ξ)

by (2.34), we factorize the conjugation matrix v(3)(p) on Σ1(ξ) according to

v(3)(p) =



(
F−1
− 0

F−1
−
χ e2tg(p) F−

)(
i 0

0 i

)(
F+

F+

χ e−2tg(p)

0 F−1
+

)
, p ∈ Σ1,u(ξ),(

F−1
− 0

F−1
−
χ e2tg(p) F−

)(
−i 0

0 −i

)(
F+

F+

χ e−2tg(p)

0 F−1
+

)
, p ∈ Σ1,`(ξ).

Next introduce lens-shaped domains Ω1(ξ) and Ω∗1(ξ) around the contour Σ1(ξ) as
depicted in Fig. 9 with Ω1(ξ) ⊂ D and transform the vector m(3)(p) as follows:
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Figure 9. The lens contour near Σ1(ξ). Views from the upper
and lower sheet. Dotted curves lie on the lower sheet.

(4.10) m(4)(p) = m(3)(p)



(
F−1(p) −F (p)

V (p)e−2tg(p)

0 F (p)

)
, p ∈ Ω1(ξ),(

F−1(p) 0
F−1(p)
V (p) e2tg(p) F (p)

)
, p ∈ Ω∗1(ξ),(

F−1(p) 0

0 F (p)

)
, else,

where V (p) is an analytical continuation of χ(p) = −T (p)T1(p) to Ω1(ξ) and
V (p∗) = −V (p) for p ∈ Ω∗1(ξ). This transformation preserves the symmetry prop-
erty for m(4) due to F (p∗) = F−1(p). Since F (∞+) ∈ R+ (see Lemma 5.2 be-
low), the normalization property is also preserved for m(4). Recall that the only
singularity at an edge point of the current jump contours which can happen for

m(3)(p), is the singularity at −c− 2d, where m
(3)
1 (p) = C(p+ c+ 2d)−1/2(1 + o(1)),

p ∈ ΠU in the resonant case. But in this case χ(p) = C(p+ c+ 2d)−1/2(1 + o(1)),
p ∈ Σ1, and therefore F (p) = C(p + c + 2d)−1/4(1 + o(1)) for p ∈ ΠU and
F (p) = C(p + c + 2d)1/4(1 + o(1)) for p ∈ ΠL (cf. [32]). Here C denotes arbi-
trary non-vanishing constants. Thus, in a vicinity of −c − 2d we have by (4.10)

that m
(4)
1 (p) = m

(3)
1 (p)F−1(p) = C((p+c+2d)−1/4)(1+o(1)) for p ∈ ΠU in the res-

onant case. In the nonresonant case χ(p) = C(p+c+2d)1/2(1+o(1)), and F−1(p) =

C(p+c+2d)−1/4(1+o(1)) for p ∈ ΠU . Consequently m
(4)
1 (p) = C((p+c+2d)−1/4),

p ∈ ΠU , in the nonresonant case too. Denote

Γ(ξ) := Σ1(ξ) ∪ Σ ∪ I(ξ) ∪ I∗(ξ) ∪ C1(ξ) ∪ C∗1 (ξ) ∪ C(ξ) ∪ C∗(ξ),

where the orientation is chosen as before. We proved the following

Theorem 4.1. For any ξ ∈ (ξ′cr, ξcr), the initial RH problem formulated in The-
orem 2.3 is equivalent to the following RH problem: To find a holomorphic vector
function m(4)(p) in the domain M(ξ) \ Γ(ξ), with both components continuous up
to the boundary except at the point −c− 2d, where

(4.11) m
(4)
1 (p) = m

(4)
2 (p∗) = C(p+ c+ 2d)−1/4(1 + o(1)), for p ∈ ΠU , C 6= 0.
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This vector function satisfies the symmetry and normalization conditions from The-

orem 2.3 and the jump condition m
(4)
+ (p) = m

(4)
− (p)v(4)(p) with

v(4)(p) =



iI, p ∈ Σ1,u(ξ),

−iI, p ∈ Σ1,`(ξ),(
e2itB+i∆ 0

0 e−2itB−i∆

)
, p ∈ (I(ξ) ∪ I∗(ξ)) \ (I4(ξ) ∪ I∗4 (ξ)),(

e2itB+i∆ 0

χ(p)F−1
+ (p)F−1

− (p)e2tRe g(p) e−2itB−i∆

)
, p ∈ I4(ξ),(

e2itB+i∆ χ(p)F+(p)F−(p)e−2tRe g(p)

0 e−2itB−i∆

)
, p ∈ I∗4 (ξ),(

1 F 2(p)V −1(p)e−2tg(p)

0 1

)
, p ∈ C1(ξ),(

1 0

−F−2(p)V −1(p)e2tg(p) 1

)
, p ∈ C∗1 (ξ),(

1 0

−F−2(p)R(p)e2tg(p) 1

)
, p ∈ C(ξ),(

1 −R(p∗)F 2(p)e−2tg(p)

0 1

)
, p ∈ C∗(ξ).

Here I is the identity matrix. Moreover, the solution of the initial and present RH
problems for large p are connected by

(4.12) m(4)(p) = m(p)

(
s−1(p) 0

0 s(p)

)
, where s(p) = et(Φ(p)−g(p))F (p).

Observe that for p ∈ C(ξ) ∪ C∗(ξ),

0 < Ĉe−tĥ(ξ) ≤ |F−2(p)R(p)e2tg(p)| ≤ Ce−th(ξ), where 0 < ĥ(ξ) < h(ξ),

that is, as t → ∞ the jump matrix v(4)(p) is exponentially close to the identity
matrix on C(ξ)∪C∗(ξ). The same holds true for v(4)(p) on C1(ξ)∪C∗1 (ξ), except for
a small neighborhood of the point γ. Since

|χ(p)F−1
+ (p)F−1

− (p)|+ |χ(p∗)F−(p∗)F+(p∗)| ≤ Ce−th(ξ,ε), p ∈ C1(ξ) \ Oε,
where h(ξ, ε) > 0 and Oε is a small neighborhood of γ, we conclude that outside of
Oε, v(4)(p) is exponentially close to the following matrix:

(4.13) vmod(p) =


iI, p ∈ Σ1,u(ξ),
−iI, p ∈ Σ1,`(ξ),(
e2itB+i∆ 0

0 e−2itB−i∆

)
, p ∈ I(ξ) ∪ I∗(ξ).

Thus we may expect that the solution of the RH problem for m(4)(p) can be approx-
imated by the solution of the following model RH problem: To find a holomorphic
function in M(ξ) \

(
Σ1(ξ) ∪ I(ξ) ∪ I∗(ξ)

)
(4.14) mmod(p) = (mmod

1 (p),mmod
2 (p))
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which is continuous up to the boundary except of possibly the points −c− 2d and
γ, satisfies the jump condition

(4.15) mmod
+ (p) = mmod

− (p)vmod(p)

with jump matrix (4.13), the standard symmetry condition

(4.16) mmod(p∗) = mmod(p)

(
0 1
1 0

)
,

and the normalization condition

(4.17) mmod
1 (∞+)mmod

2 (∞+) = 1, mmod
1 (∞+) > 0.

We will solve this problem explicitly in the next section.

5. Solution of the model problem

We first choose a canonical basis of a and b cycles for the Riemann surface
M(ξ) associated with the function (3.14). The b cycle surrounds the interval [−c−
2d, γ(ξ)] counterclockwise on the upper sheet ΠU (ξ) and the a cycle coincides with
I(ξ)∪ I∗(ξ), passing from γ(ξ) to −1 on the upper sheet and back from −1 to γ(ξ)
on the lower sheet. Let ωpp∗ , p ∈ M(ξ) \ (I(ξ) ∪ I∗(ξ)), be the normalized Abel
differential of the third kind with poles at p and p∗ such that

(5.1)

∫
a

ωpp∗ = 0.

Then it can be represented as (see [35])

(5.2) ωpp∗ =

(
R1/2(p, γ)

λ− π(p)
+G(p)

)
dλ

R1/2(λ, γ)
,

where G(p) is determined from the normalization condition (5.1). Hence

(5.3) G(p) =
R1/2(p, γ)

Y

∫
a

dλ

(π(p)− λ)R1/2(λ, γ)
,

where

(5.4) Y = Y (ξ) :=

∫
a

dλ

R1/2(λ, γ)
> 0.

Lemma 5.1. Uniformly for λ ∈ Σ1(ξ) there exists

lim
p→∞±

ωpp∗ = ω∞±∞∓ .

Proof. For example, let p ∈ ΠU . For p→∞+,

(5.5) R1/2(p, γ) = −p2 +
γ − c− 2d

2
p+ f(γ, p), where f(γ, p) = O (1).

Then (5.3) and (5.5) imply

Y G(p) =

∫
a

R1/2(p, γ)

p
(
1− λ

p

)
R1/2(λ, γ)

dλ =
R1/2(p, γ)

p

∫
a

(
1 + λ

p + λ2

p2

)
dλ

R1/2(λ, γ)
+O(p−2)

= Y
R1/2(p, γ)

p

(
1 +

b

p
+

a

p2

)
+O(p−2),(5.6)
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where the coefficients a = a(ξ) and b = b(ξ) are defined as

a : = a(ξ) =

∫
I(ξ)

λ2 dλ

R1/2(λ, γ)

(∫
I(ξ)

dλ

R1/2(λ, γ)

)−1

,(5.7)

b : = b(ξ) =

∫
I(ξ)

λ dλ

R1/2(λ, γ)

(∫
I(ξ)

dλ

R1/2(λ, γ)

)−1

.(5.8)

Substituting (5.6) and (5.5) in (5.2) the following holds for any fixed λ as p→∞+

ωpp∗ =
R1/2(p, γ) +G(p)(λ− p)

(λ− p)R1/2(λ, γ)
= −

R1/2(p,γ)
p +

(
λ
p − 1

)
G(p)(

1− λ
p

)
R1/2(λ, γ)

=
λ− b(ξ)
R1/2(λ, γ)

+
1

p

q(λ)

R1/2(λ, γ)
+

1

p2

f(λ, p)

R1/2(λ, γ)
,(5.9)

where

(5.10) q(λ) := q(λ, ξ) = λ2 − ν(ξ)λ+ ν(ξ)b(ξ)− a(ξ), ν(ξ) =
γ(ξ)− c− 2d

2
.

The function f(λ, p, ξ) is uniformly bounded with respect to (λ, p) on any compact
set for λ as p→∞+. Next, from condition (3.16) (b), we get

(5.11) h := h(ξ) = b(ξ).

We see that the first summand in (5.9) corresponds to the definition of ω∞+,∞−
(see [34]). The case p→∞− is analogous. �

Equation (5.3) also implies the continuity of G(p) on M(ξ) \ (I(ξ) ∪ I∗(ξ)), but
along I(ξ) ∪ I∗(ξ) (oriented as above) the function G(p) has a jump

(5.12) G+(p)−G−(p) = −2πi

Y
, p ∈ I(ξ) ∪ I∗(ξ),

where the constant Y is defined by (5.4). To prove (5.12) one applies the Sokhotski–
Plemelj formula to (5.3). Similarly for any λ ∈ Σ1(ξ) ∪ Σ,

(ωpp∗)+ − (ωpp∗)− = −2πi

Y

dλ

R1/2(λ, γ)
= −2πiζ,

where

ζ =
1

Y

dλ

R1/2(λ, γ)

is the holomorphic Abel differential, normalized by the condition
∫
a
ζ = 1. In

summary, we proved the following

Lemma 5.2. The function

(5.13) F (p) := exp

(
1

2πi

∫
Σ1(ξ)

log |χ|ωpp∗
)

solves the conjugation problem (4.9) with

(5.14) ∆(ξ) := i

∫
Σ1(ξ)

log |χ|ζ =
i

Y

∫
Σ1(ξ)

log |χ(λ)|dλ
R1/2(λ, γ)

∈ R.
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Note that this function has finite real limits at ∞± by Lemma 5.1. It satisfies
F (p∗) = F−1(p) because ωpp∗ = −ωp∗p. Moreover, (5.9) implies that for p→∞+

(5.15) F (p) = exp

(
1

2πi

∫
Σ1(ξ)

log |χ|ω∞+∞−

)(
1 +

Q(ξ)

p
+O

(
1

p2

))
,

where

(5.16) Q(ξ) =

∫
Σ1(ξ)

log |χ(λ)| q(λ, ξ)dλ
2πiR1/2(λ, γ)

∈ R,

with q(λ, ξ) defined by (5.10).
Denote by

τ = τ(ξ) =

∫
b

ζ = − 1

Y

∫
Σ1(ξ)

dλ

R1/2(λ, γ)

the b-period of the normalized holomorphic Abel differential ζ. Since Y > 0 by
(5.4) we have τ ∈ iR+. Introduce the theta function

θ(v) := θ(v | τ) =
∑
m∈Z

exp
(
πim2τ + 2πimv

)
and the Abel map A(p) := A(p, ξ) =

∫ p
−c−2d

ζ, which has the following properties

(cf. [15, 34]):

A(p∗) = −A(p), A(γ) = −τ
2

(mod τ),

A+(p)−A−(p) = −τ for p ∈ I(ξ) ∪ I∗(ξ),

A(p) = A(∞±)± 1

Y λ
+O(λ−2), p = (λ,±)→∞±,(5.17)

2A(∞+) = A(∞+)−A(∞−) =
1

2πi
Λ,(5.18)

where

(5.19) Λ = Λ(ξ) =

∫
b

ω∞+∞− .

Let Ξ = τ
2 + 1

2 be the Riemann constant. Then the functions θ
(
A(p) + τ

2 −Ξ
)

and

θ
(
A(p∗) + τ

2 − Ξ
)

both have their only zeros at γ. Denote

(5.20) α(p) := α(p, ξ) =
θ
(
A(p) + τ(ξ)

2 − Ξ(ξ) + tB(ξ)
π + ∆(ξ)

2π

)
θ
(
A(p) + τ(ξ)

2 − Ξ(ξ)
) .

Standard properties of theta functions show that this function is holomorphic on
M(ξ) except at the point γ, and has a single jump along I(ξ) ∪ I∗(ξ),

α+(p) = α−(p)e2itB(ξ)+i∆(ξ),

α+(p∗) = α−(p∗)e−2itB(ξ)−i∆(ξ).

Now, on the upper sheet ΠU (ξ), introduce the function

(5.21) δ(p) = 4

√
π(p)− γ

π(p) + c+ 2d
,

where the branch of 4
√
· is chosen to take positive values for π(p) > γ. Hence this

function also takes positive values for p < −c−2d. We continue δ(p) by δ(p∗) = δ(p)
as an even function to ΠL(ξ). Observe that δ(p) has no jump on Σ, because it is
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real-valued and takes equal values at symmetric points of Σu and Σ` on ΠU . On
Σ1(ξ), it solves the following conjugation problem:

δ+(p) = δ−(p)

{
i, p ∈ Σ1,u(ξ),

−i, p ∈ Σ1,`(ξ).

Thus the vector m̂(p) = (δ(p)α(p), δ(p∗)α(p∗)) solves the jump problem m̂+(p) =
m̂−(p)vmod(p), where vmod(p) is defined by (4.13), and satisfies the symmetry con-
dition (2.25). But m̂(p) does not satisfy the normalization condition, because
m̂1(∞+)m̂2(∞+) 6= 1. To mend this, recall that δ(∞+) = δ(∞−) = 1. Hence

(5.22) mmod(p) =
1√

α(∞+)α(∞−)
(δ(p)α(p), δ(p∗)α(p∗))

solves the model problem including (4.17). Note that this solution is bounded ev-
erywhere in M(ξ) except at the branch points −c−2d, γ(ξ), where both components
of mmod(p) have singularities of type O

(
(p+ c+ 2d)−1/4

)
and O

(
(p− γ)−1/4

)
. The

first singularity matches well with (4.11).
Our next task is to derive the asymptotic formula for this vector as p→∞+ up

to terms of order O(p−2).

Lemma 5.3. Let Ω0 be the Abel differential of the second kind on M(ξ) with second
order poles at ∞+ and ∞− normalized by the condition

∫
a

Ω0 = 0 and let ω∞+∞−
be the Abel differential of the third kind as above. Then

∂

∂p
g(p, ξ)dπ = Ω0 + ξω∞+∞− ,

where ∂
∂pg(p, ξ) is defined by (3.19). Moreover,

−2iB(ξ) = U + ξΛ,

where U = U(ξ) =
∫
b

Ω0 is the b-period of Ω0 and Λ = Λ(ξ) is the b-period of
ω∞+∞− defined by (5.19).

This lemma is a direct corollary of Lemma 3.1 and (3.15). Since ξ = n
t we have

tB(ξ)

π
= −t U

2πi
− n Λ

2πi

and substituting this into (5.20), taking into account that θ(v + 1) = θ(v), we get

(5.23) α(p) =
θ
(
A(p) + τ(ξ)

2 − Ξ(ξ)− t U2πi − n
Λ

2πi + ∆(ξ)
2π

)
θ
(
A(p) + τ(ξ)

2 − Ξ(ξ)
) .

Passing to the limit as p→∞+ and using property (5.18) we obtain

α(∞+) =
θ(z(n− 1, t))

α+
, α(∞−) =

θ(z(n, t))

α−
,

where

(5.24) z(n, t) := A(∞+)− nΛ(ξ)

2πi
− tU(ξ)

2πi
+
τ(ξ)

2
+

∆(ξ)

2π
− Λ(ξ)

2πi
− Ξ(ξ),

and

α± := α±(ξ) = θ
(
A(∞±) +

τ(ξ)

2
− Ξ(ξ)

)
.
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Note that since ∆(ξ)
2π −

Λ(ξ)
2πi ∈ R and τ(ξ)

2 = −A(γ), by the Jacobi inversion theorem
([34]), there exists a point ρ(ξ) ∈ I(ξ) ∪ I∗(ξ) such that

(5.25) −A(ρ) +A(γ) =
∆(ξ)

2π
− Λ(ξ)

2πi
.

Thus we can represent z(n, t) in a more familiar form for finite-gap operators

(5.26) z(n, t) := A(∞+)−A(ρ)− n Λ

2πi
− t U

2πi
− Ξ.

Passing to the limit p→∞+ in the first component of vector (5.22) we get

(5.27) mmod
1 (∞+) = β(ξ)

√
θ(z(n− 1, t))

θ(z(n, t))
,

where

(5.28) β(ξ) =

√
α−

α+
=

√√√√θ
(
A(∞−) + τ(ξ)

2 − Ξ(ξ)
)

θ
(
A(∞+) + τ(ξ)

2 − Ξ(ξ)
) ∈ R

is a real-valued continuously differentiable function of ξ with a bounded deriva-
tive on the interval under consideration. Recall now that we assume m(4)(p) =
mmod(p) + o(1) as p → ∞+, where o(1) is understood with respect to t → ∞.
Apply this to (5.27), (4.12), (3.22), (5.13), (3.21), and Lemma 5.1. We obtain that
the first component of the solution of the initial RH problem, which is equal to∏+∞
j=n(2a(j, t)) by (2.29) and (2.28), is

+∞∏
j=n

(2a(j, t)) = β(ξ)etK(ξ)e
1

2πi

∫
Σ1(ξ)

log |χ|ω∞+∞−

√
θ(z(n− 1, t))

θ(z(n, t))

(
1 + o(1)

)
,

where β(ξ) and z(n, t) are defined by (5.28) and (5.26), and o(1) is a function which
tends to 0 as t→∞. Recall that we treat ξ as a slow variable, and that all functions
of ξ are continuously differentiable with respect to ξ in our considerations. This
means, for example, that if ξ = n

t and ξ′ = n+1
t , then β(ξ)β−1(ξ′) = 1 + O(t−1)

and

et(K(ξ)−K(ξ′)) = e−
dK
dξ (ξ) +O(t−1),

etc. Consequently,

(5.29) a2(n, t) =
1

4
e−2K′(ξ) θ(z(n− 1, t))θ(z(n+ 1, t))

θ2(z(n, t))
+ o(1).

Lemma 5.4. Let ã = ã(ξ) be the constant from the expansion (cf. [34, Eq. (9.42)])

e
∫ p
−c−2d

ω∞+∞− = − ã
λ

(
1 +

b̃

λ
+O(λ−2)

)
, p = (λ,+) ∈ ΠU (ξ),

and let K ′(ξ) := dK
dξ (ξ), k′(ξ) = dk

dξ (ξ), with K(ξ) and k(ξ) defined by (3.22) and

(3.21), respectively. Then

1

4
e−2K′(ξ) = ã2(ξ),(5.30)

k′(ξ) = b̃(ξ).(5.31)
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Proof. According to equation (9.43) in [34], the constant ã can be computed as

log ã = lim
λ→+∞

(∫ λ

1

ω∞+∞− + log λ

)
.

Therefore, one has to prove that K ′(ξ) + log 2 = − log ã. By (3.22) and (3.18),

d

dξ
lim

λ→+∞

∫ λ

1

(
(x− µ(ξ))

√
x− γ(ξ)√

(x2 − 1)(x+ c+ 2d)
− x+ ξ√

x2 − 1

)
dx+ log 2

= − lim
λ→+∞

(∫ λ

1

∂2

∂ξ∂x
g̃(x, ξ)dx+ log

(
λ+

√
λ2 − 1

))
+ log 2

= − lim
λ→+∞

(∫ λ

1

ω∞+∞− + log λ

)
,

which proves (5.30). Formula (5.31) follows immediately from (3.18). �

To derive the term of order λ−1 for the first component of the solution we observe
that by (5.17), (5.23), and (5.24),
(5.32)

α(p) = α(∞+)

(
1 +

1

Y λ

∂

∂w
log

(
θ
(
z(n− 1, t) + w

)
θ
(
A(∞+) + τ

2 − Ξ + w
)) ∣∣∣

w=0
+O(λ−2)

)
,

p = (λ,+). Denote

(5.33) η := η(ξ) = − 1

Y

∂

∂w
log
(
θ
(
A(∞+) +

τ

2
− Ξ + w

)) ∣∣∣
w=0
− γ + c+ 2d

4
.

Then combining (5.22), (5.27), (5.21), (5.32), and (5.33) we get

mmod
1 (p) = mmod

1 (∞+)

(
1 +

1

Y λ

∂

∂w
log θ

(
z(n− 1, t) + w

)∣∣∣
w=0

+
η

λ
+O(λ−2)

)
.

Respectively, by (4.5), (4.6), (5.15), (5.16), (5.10), (3.21), and (2.28)

−B(n−1, t) =
(
−tk(ξ)+

t

2
+η(ξ)+Q(ξ)+

1

Y

∂

∂w
log θ

(
z(n−1, t)+w

)
|w=0

)
(1+o(1)),

where o(1) tends to 0 as t → ∞ and n
t = ξ is almost a constant. Apply now the

same arguments as for (5.29) and use (5.31) to get b(n, t) = b(n, t, ξ) + o(1), where

(5.34) b(n, t, ξ) = b̃+
1

Y

∂

∂w
log

(
θ
(
z(n− 1, t) + w

)
θ
(
z(n, t) + w

) ) ∣∣∣
w=0

.

Lemma 5.4 and (5.29) also imply a2(n, t) = a2(n, t, ξ) + o(1) with

(5.35) a2(n, t, ξ) = ã2 θ(z(n− 1, t))θ(z(n+ 1, t))

θ2(z(n, t))
.

Formulas (5.35) and (5.34) for fixed ξ describe the standard two-band Toda lattice
solution (cf. [34, Theorem 9.48]). Thus, assuming that the solution of the model
RH problem (4.13)–(4.17) approximates the solution of the initial RH problem I–IV
well, we arrive at the following

Theorem 5.5. Let

1. {a(n, t), b(n, t)} be the solution of the problem (1.1), (2.2)–(2.5) as n, t→∞ in
the domain ξ′cr t < n < ξcr t, where the parameters ξ′cr and ξcr are defined by
(3.9), (3.7), and (3.5);
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2. ξ ∈ (ξ′cr, ξcr) be a parameter; γ(ξ) ∈ (−c− 2d,−c+ 2d) be defined by (3.12) and
(3.13); M(ξ) be the Riemann surface of the function (3.14);

3. ρ(ξ) be a point on M(ξ), defined by (5.25), (5.14) with π(ρ) ∈ [γ,−1];
4. {a(n, t, ξ), b(n, t, ξ)} be the finite-gap solution corresponding to the initial divisor

ρ(ξ) via (5.35), (5.34), (5.26).

Then in a vicinity of any ray n = ξt the solution of the problem (1.1), (2.2)–(2.5)
has the following asymptotical behavior as t→ +∞
(5.36) a(n, t) = a(n, t, ξ) + o(1), b(n, t) = b(n, t, ξ) + o(1).

6. Asymptotics of the solution in the domain ξcr,1 < ξ < ξ′cr,1

In this domain we study the asymptotic behavior of the solution to the problem
(1.1)–(2.5) with the help of the RH problem I–IV. The considerations are similar
to those in Sec. 3–5, and we give a short description of the necessary changes. Let
ξ ∈ (ξcr,1, ξ

′
cr,1) with ξcr,1 and ξ′cr,1 defined by (3.6), (3.7), (3.9). Here we choose

the g-function with its moving point γ1 = γ1(ξ) on the interval (−1, 1),

g1(p, ξ) = −
∫ p

1

(x− µ1(ξ))(x− γ1(ξ))

R1/2(x, γ1(ξ))
dx,

where the function

(6.1) R
1/2
1 (λ, γ1) = −

√
(λ+ c+ 2d)(λ+ c− 2d)(λ− 1)(λ− γ1)

defines the corresponding Riemann surface M1(ξ). The points µ1(ξ) ∈ (−c +
2d, γ1(ξ)) and γ1(ξ) ∈ (−1, 1) are chosen to satisfy

(6.2)

∫ γ1(ξ)

−c+2d

(λ− µ1(ξ))(λ− γ1(ξ))

R
1/2
1 (λ, γ1(ξ))

dλ = 0, 2c− 1 + γ1(ξ) + 2µ1(ξ) = −2ξ.

The last condition implies

Φ1(p, ξ)− g1(p, ξ) = K1(ξ) +
k1(ξ)

λ
+O(λ−2), as p = (λ,+)→∞+,

where K1 and k1 are real-valued constants. For the same reasons as above,

(6.3)
∂K1(ξ)

∂ξ
= lim
p→∞+

(
− log(z1(p)) +

∫ p

1

ω1
∞+∞−

)
= log ã1 − log d,

where z1(p) is defined by (2.10) and ω∞+∞−,1 is the normalized Abel integral of
the third kind on M1(ξ). The b1 circle surrounds the interval [−c − 2d,−c + 2d]
counterclockwise on the upper sheet, and a1 follows the gap I1(ξ) = [−c + 2d, γ1]
on the upper sheet in positive direction, and then back on the lower sheet of M1(ξ).

The following lemma justifies the existence of this g-function; its proof is the
same as before.

Lemma 6.1. The functions γ1(ξ) ∈ (−1, 1) and µ1(ξ) ∈ (−c+ 2d, γ1(ξ)) satisfying
(6.2) exist for ξ ∈ (ξcr,1, ξ

′
cr,1). On this interval, γ1(ξ) is decreasing with γ1(ξcr,1) =

1 and γ1(ξ′cr,1) = −1.

The signature table for Re g1 is depicted in Figure 10. The remaining considera-
tions are completely identical to those of the previous two sections up to a natural
symmetry, so we just formulate the result here. Denote∫ −c+2d

−c−2d

(λ− µ1)(λ− γ1)

R
1/2
1 (λ+ i0, γ1)

dλ = iB1(ξ),
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Figure 10. Sign of Re g1(p) on the upper sheet of M1(ξ)

and

(6.4) ∆1(ξ) :=
i

Y1

∫
Σ(ξ)

log |χ(λ)|dλ
R

1/2
1 (λ, γ1)

, Y1 = 2

∫
I1

dλ

R
1/2
1 (λ, γ1)

.

We preserve the clockwise orientation on Σ1 and on the truncated contour Σ(ξ).
Let ω̃pp∗ be the normalized Abel differential of the third kind with poles at p

and p∗ and ζ̃ be the holomorphic normalized Abel differential on M(ξ). Denote by

τ1 =
∫
b1
ζ̃ and let θ1(v) = θ(v | τ1). Set A1(p) =

∫ p
−c−2d

ζ̃ and denote by Ξ1 the

Riemann constant. Let U1 be the b-period of the Abel differential of the second
kind on M1(ξ) with second order poles at ∞+ and ∞− and Λ1 be the b-period of
ω̃∞+∞− . We use

tB1(ξ)

π
= −t U1

2πi
− n Λ1

2πi
and define

(6.5) z1(n, t) := A(∞+)− n Λ1

2πi
− t U1

2πi
+
τ1(ξ)

2
− 1

2
− ∆1(ξ)

2π
− Λ1

2πi
− Ξ1(ξ).

For ξ fixed and the spectrum [−c−2d,−c+2d]∪[γ1(ξ), 1], let {a1(n, t, ξ), b1(n, t, ξ)}
be the finite-gap solution of the Toda lattice defined by

(a1(n, t, ξ))2 = ã2
1

θ1(z1(n+ 1, t))θ1(z1(n− 1, t))

θ2
1(z1(n, t))

,(6.6)

bq(n, t, ξ) = b̃+
1

Γ1

∂

∂w
log

(
θ
(
z1(n− 1, t) + w

)
θ
(
z1(n, t) + w

) ) ∣∣∣
w=0

.(6.7)

This finite-gap solution is connected with the solution of the model problem in the
same way as in the previous section. Thus, if we solve the parametrix problem, we
can expect that the following result is valid.

Theorem 6.2. Let

1. {a(n, t), b(n, t)} be the solution of the problem (1.1), (2.2)–(2.5) as n, t→∞ in
the domain ξcr,1 t < n < ξ′cr,1 t, where ξcr,1 and ξ′cr,1 are defined by (3.6)–(3.9);

2. ξ ∈ (ξcr,1, ξ
′
cr,1) be a parameter; γ1(ξ) ∈ (−1, 1) be defined by (6.2);

3. {a1(n, t, ξ), b1(n, t, ξ)} be the finite-gap solution defined by (6.5)–(6.7).

Then in a vicinity of any ray n = ξt the solution of the problem (1.1), (2.2)–(2.5)
has the following asymptotical behavior as t→ +∞

a(n, t) = a1(n, t, ξ) + o(1), b(n, t) = b1(n, t, ξ) + o(1).
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Remark 6.3. In the case of spectra of equal length, that is, if d = 1/2, one could
also derive these results from Section 4 by the following transformation. Set â(n) :=

a(−n − 1), b̂(n) := −b(−n) and rescale the spectral parameter by λ̂ := (λ − c)/2d,
which shifts the original problem with background spectra [−c − 2d,−c + 2d] and

[−1, 1] to [−ĉ − 2d̂,−ĉ + 2d̂] and [−1, 1], where ĉ = c/2d, d̂ = 1/4d. To obtain
explicit formulas for the solution in terms of theta functions, this approach requires

to recompute all quantities, for example, ξ̂cr = 1
2dξcr,1 = ξcr,1, and so on.

7. Asymptotics of the solution for ξ ∈ (ξ′cr,1, ξcr,0) ∪ (ξcr,0, ξ
′
cr)

In this region we work on the initial Riemann surface M corresponding to the
function (2.7). The g-functions associated with the left and right RH problems
(2.35) and (2.36) coincide up to the sign. Namely, introduce two points −c+ 2d <
µ1(ξ) < µ2(ξ) < −1 such that

(7.1)

∫ −1

−c+2d

(λ− µ1(ξ))(λ− µ2(ξ))

R1/2(λ)
dλ = 0, µ1(ξ) + µ2(ξ) + c = −ξ.

The last equality implies that

ggap(p, ξ) =

∫ p

1

(ζ − µ1(ξ))(ζ − µ2(ξ))

R1/2(ζ)
dζ

has the following asymptotical behavior

ggap(p) = Φ(p) +O(1) = −Φ1(p) +O(1) as p→∞±.

Moreover, µ1 and µ2 exist as ξ ∈ (ξ′cr,1, ξ
′
cr) and the line Re ggap(p) = 0 crosses

the real axis between these two points. We introduce the b and a cycles and all
normalized Abel differentials on M analogously to those on M(ξ), M1(ξ). It is
evident that both RH problems can be solved by an analogous procedure as above,
but with Step 1 (cf. Section 4) excluded. Moreover, to cancel the poles at p0 and
p∗0 when performing Step 2 one has to use the right RH problem (2.35), (2.37) for
ξ ∈ (ξcr,0, ξ

′
cr), and the left RH problem (2.36), (2.38) for ξ ∈ (ξ′cr,1, ξcr,0). Thus,

as the asymptotic of the solution of the problem (1.1)–(2.5) we get two finite-gap
solutions, described by (5.35)–(5.34) and (6.6)–(6.7) with the same theta function
(τ = τ1), but with different arguments: (5.24) and (6.5). Namely, since z(n, t)
and z1(n, t) are defined on the same surface, then Λ = Λ1, U = U1, Ξ = Ξ1,
A(∞+) = A1(∞+). Moreover, none of them depends on ξ. Thus

(7.2) z1(n, t) = z(n, t)− ∆

2π
+

1

2
− ∆1

2π
,

where

∆ := i

∫
Σ1

log |χ|ζ, ∆1 := i

∫
Σ

log |χ|ζ,

and ζ is the holomorphic normalized Abel differential on M. The contours Σ1 and
Σ are the same as in Section 2. Formula (7.2) implies the following reasoning. To
prove that the asymptotics of the Toda lattice solution are the same when obtained
from the right and from the left RH problems in the absence of discrete spectrum
in the gap [−c+ 2d,−1], it is sufficient to prove that ∆ + ∆1 = π (mod 2π) or

(7.3) ei(∆+∆1) = −1.
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Let us first make sure that this is true. Denote I = I1 = [−c+2d,−1] ∈ ΠU . Recall
that (cf. Lemma 5.2) the function

F (p) := exp

(
1

2πi

∫
Σ∪Σ1

log |χ|ωpp∗
)

is the unique solution of the following conjugation problem: to find a holomorphic
function on M \ (Σ ∪ Σ1 ∪ I ∪ I∗), such that

F (p∗) = F−1(p), p ∈M,(7.4)

F+(p) = F−(p)|χ(p)|, p ∈ Σ ∪ Σ1.(7.5)

On the set I ∪ I∗ this function has a jump,

(7.6) F+(p) = F−(p)ei∆̃, p ∈ I ∪ I∗, with ∆̃ := i

∫
Σ∪Σ1

log |χ|ζ = ∆ + ∆1.

The orientation on I ∪ I∗ is the same as for the a cycle. Note that the jump along
I ∪ I∗ can not be arbitrary. In fact, one can solve (7.5) without the Sokhotski–
Plemelj formula as follows. Consider the function

δ̃(λ) =
4

√
(λ+ c)2 − 4d2

λ2 − 1
, δ̃(2) > 0, λ ∈ C \ [−c− 2d, 1].

Let the interval [−c− 2d, 1] be oriented in the positive direction. Then

δ̃+(λ) = δ̃−(λ)


−i, λ ∈ (−1, 1),

−1, λ ∈ (−c+ 2d,−1),

i, λ ∈ (−c− 2d,−c+ 2d).

Set δ(p) = δ̃(λ) as p = (λ,+) ∈ ΠU and δ(p) = δ−1(p∗). Then δ(p) solves the
following conjugation problem

δ+(p) = δ−(p)

{∣∣∣√ (π(p)+c)2−4d2

π(p)2−1

∣∣∣ , p ∈ Σ ∪ Σ1,

−1, p ∈ I ∪ I∗.

On the other hand, the transmission coefficient f(p) = T (p) is a single-valued
function on the upper sheet of M and takes complex conjugated values in symmetric
points of Σ. Continue f on the lower sheet by f(p) = T−1(p∗), p = (λ,−). Then
f(p∗) = f−1(p), p ∈M, and it is a solution bounded at ∞± of the problem

(7.7) f+(p) = f−(p)|T (p)|2, p ∈ Σ ∪ Σ1.

We also observe that f(p) and δ(p) are bounded at∞±. Taking into account (2.34)
and (2.22) we conclude that the function F (p) = δ(p)f(p) solves the problem (7.4)–
(7.5) and F+(p) = −F−(p) as p ∈ I ∪ I∗. Comparing this with (7.6) we get (7.3).
Thus both RH problems provide the same finite-gap solution.

Return now to our case. The function T (p) has a simple pole at p0 on ΠU , and
we have to take as f(p) the following function:

f(p) =

{
B(p, p0)T (p), p ∈ ΠU ,

f−1(p∗), p ∈ ΠL,

where

B(p, p0) = exp

(∫ p

−c−2d

ωp0p∗0

)



LONG-TIME ASYMPTOTICS FOR THE TODA SHOCK PROBLEM 33

is the Blaschke factor (cf. [35]). Since |B(p, p0)| = 1 as p ∈ Σ∪Σ1, then f(p) solves
the jump problem (7.7). But unlike in the previous case, the Blaschke factor has a
jump along I ∪ I∗,

B+(p, p0) = B−(p, p0) exp

(∫
b

ωp0,p∗0

)
.

Thus

∆ + ∆1 = π +
1

i

∫
b

ωp0,p∗0
,

or, taking into account (7.2),

(7.8) z1(n, t) = z(n, t)− 1

2πi

∫
b

ωp0p∗0
(mod 1).

To formulate the result, recall that all objects introduced in Sections 5 and 6,
namely, A(p), τ , Λ, U , Ξ, Y , ∆, ã, b̃ do not depend on ξ for ξ ∈ (ξ′cr,1, ξ

′
cr).

Respectively, the finite-gap solutions constructed in (5.35), (5.34) or (6.6), (6.7) do
not depend on ξ. Formula (7.8) implies that we can represent them via

â2(n, t) = ã2 θ(z(n− 1, t))θ(z(n+ 1, t))

θ2(z(n, t))
,(7.9)

b̂(n, t) = b̃+
1

Y

∂

∂w
log

(
θ
(
z(n− 1, t) + w

)
θ
(
z(n, t) + w

) ) ∣∣∣
w=0

,(7.10)

where the argument of the theta-function undergoes a phase shift due to the pres-
ence of the eigenvalue,

(7.11) z(n, t) = A(∞+)− n Λ

2πi
− t U

2πi
+
τ

2
+

∆

2π
− Λ

2πi
− Ξ, ξ ∈ (ξcr,0, ξ

′
cr),

and
(7.12)

z(n, t) = A(∞+)−n Λ

2πi
− t U

2πi
+
τ

2
+

∆

2π
− Λ

2πi
−Ξ− 1

2πi

∫
b

ωp0p∗0
, ξ ∈ (ξ′cr,1, ξcr,0).

Theorem 7.1. In the domain ξcr,0t < n < ξ′crt, the solution {a(n, t), b(n, t)} of the
problem (1.1), (2.2)–(2.6) is asymptotically close as t→∞ to the two band solution

{âq(n, t), b̂(n, t)} constructed by (7.9)–(7.11). In the domain ξ′cr,1t < n < ξcr,0t, the
solution {a(n, t), b(n, t)} of the problem (1.1), (2.2)–(2.6) is asymptotically close

as t → ∞ to the two band solution {âq(n, t), b̂(n, t)} constructed by (7.9), (7.10),
(7.12).

If d = 1
2 such that the spectra of the background operator are of equal length,

then the solution of (1.1), (2.2)–(2.6) is close to the periodic Toda lattice solution,
which undergoes a phase shift if discrete spectrum is present, as shown in [37].

8. Asymptotics of the solution in the domains ξ > ξcr and ξ < ξcr,1

Let us consider the domain ξ > ξcr first, where we study the right RH problem
I, (2.35), (2.37), IV. The signature table of Re Φ(p) in this case is depicted in
Fig. 11. Here Φ serves as the g-function itself. Step 1 is the same with I3 = I1 =
[−c−2d,−c+ 2d], which means that we switch from the initial Riemann surface M
to the Riemann surface M̂ of the function

√
λ2 − 1. Step 2 is done on the domain

Ω ⊂ D ∩ {p ∈ ΠU | Re Φ(p) < 0} as depicted in Figure 12. Taking into account
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Figure 11. Signature table of Re Φ(p, ξ) for ξ > ξcr on ΠU
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Figure 12. The lens contour for Step 2 on ΠU (ξ).

(4.4), we obtain that the jump matrix on I1∪I∗1 is simply the identity matrix. Thus

on M̂ we have the following conjugation problem: m2
+(p) = m2

−(p)v2(p) with

v2(p) =



I, p ∈ Σ,(
1 0

−R(p)e2tΦ(p) 1

)
, p ∈ C,(

1 −R(p∗)e−2tΦ(p)

0 1

)
, p ∈ C∗.

These transformations did not affect the asymptotical behavior of the initial so-
lution. The jumps on C ∪ C∗ are close to the identity matrix with a difference
that is exponentially small with respect to t. Clearly, the unique solution of the
model problem mmod

+ (p) = mmod
− (p)vmod(p) on Σ with standard normalization and

symmetry conditions is the unit vector. Taking into account Lemma 2.2, we get
a(n, t) = 1

2 + o(1) and b(n, t) = o(1) when t→∞ in the region n
t > ξcr.

Studying the left RH problem I, (2.36)–III in the domain n
t < ξcr,1, we obtain

in the same manner that a(n, t) = d+ o(1) and b(n, t) = −c+ o(1) when t→∞.

Appendix A. Proof of Lemma 3.1

We start by proving items (i) and (iv), i.e., we first prove that the points γ(ξ) ∈
(−c − 2d,−c + 2d) and µ(ξ) ∈ (γ(ξ),−1) satisfying (3.12)–(3.13) can be chosen
uniquely, and that γ(ξ) moves continuously to the right from γ(ξcr) = −c − 2d to
γ(ξ′cr) = −c+ 2d with respect to decreasing ξ. First of all note that if γ ∈ I1, then
µ = µ(γ) ∈ (γ,−1) is defined as

(A.1) µ(γ) =

∫ −1

γ

λ(λ− γ)

R1/2(λ, γ)
dλ

(∫ −1

γ

λ− γ
R1/2(λ, γ)

dλ

)−1

.

Evidently, µ(γ) is a continuous function of γ and by the mean value theorem

(A.2) γ < µ(γ), ∀γ ∈ (−c− 2d,−c+ 2d).
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Now consider µ as a function of ξ defined via (3.12) and insert it into (3.13). Then

F (γ, ξ) := −
∫ −1

γ

√
λ− γ

(
λ+ ξ + γ+c+2d

2

)√
(λ2 − 1)(λ+ c+ 2d)

dλ

satisfies F (γ(ξ), ξ) ≡ 0. Thus γ(ξ) is an implicitly given function and

∂F

∂γ

dγ

dξ
+
∂F

∂ξ
= 0.

Since

∂F

∂γ
= −1

2

(
ξ +

3γ + c+ 2d

2

)∫ −1

γ

dλ

R1/2(λ, γ)
,

∂F

∂ξ
=

∫ −1

γ

λ− γ
R1/2(λ, γ)

dλ,

and R1/2(λ, γ) does not change its sign on the interval (γ,−1), then

(A.3)
dγ

dξ
=

4K(ξ)

2ξ + 3γ + c+ 2d
,

where

K(ξ) =

∫ −1

γ(ξ)

λ− γ(ξ)

R1/2(λ, γ(ξ))
dλ

(∫ −1

γ(ξ)

dλ

R1/2(λ, γ(ξ))

)−1

> 0

in the region under consideration. We want to show that

(A.4) f(ξ) := 2ξ + 3γ(ξ) + c+ 2d < 0, for ξ ∈ (ξ′cr, ξcr).

First observe that

(A.5) γ(ξcr) = −c− 2d.

Namely, for any γ, the function µ(γ) is defined by (A.1), which for γ = −c− 2d is
equal to

µ(−c− 2d) =

∫ −1

−c−2d

λ√
λ2 − 1

dλ

(∫ −1

−c−2d

dλ√
λ2 − 1

)−1

= −ξcr,2

by (3.5). On the other hand, for µ = −ξcr, γ = −c − 2d, and ξ = ξcr, (3.12) is
also satisfied. Thus (A.5) is true and f(ξcr) = 2(ξcr − c− 2d). Moreover, (3.5) and
c+ 2d > 1 imply

(A.6) 2ξcr ≤ c+ 2d+ 1.

Since c+ 2d+ 1 < 2c+ 4d by (2.3), then f(ξcr) < 0 where f is defined by (A.4).
Moreover, the function γ is continuously differentiable with respect to ξ at least in
the right vicinity of ξcr. In fact, it will be continuously differentiable up to the first
point ξ where f(ξ) = 0. But if f(ξ) = 0 then 3γ + c + 2d = −2ξ. On the other
hand, by (3.12) −2ξ = γ + 2µ + c + 2d. Thus at ξ0 where f(ξ0) = 0, one obtains

µ = γ which contradicts (A.2). Therefore dγ
dξ < 0, starting at the point γ = −c−2d

where ξ = ξcr and at least up to the point γ = −c+ 2d where ξ = ξ′cr.
Now we prove (ii), i.e., we prove representations (3.15)–(3.17). Let h = h(ξ) be

defined by (5.11). Given γ, µ and h, we observe that ν1 and ν2 are zeros of the
polynomial

p(λ) = (λ− ν1)(λ− ν2) = (λ− γ)(λ− µ)− ξ(λ− h)
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with real-valued coefficients. These zeros cannot be complex conjugated, because
(3.15), (3.16) (b), and (3.13) imply∫ −1

γ

p(λ)dλ

R1/2(λ, γ)
= 0,

moreover, this formula implies that at least one zero belongs to the interval (γ,−1).
Condition (3.17) is true due to the asymptotical behavior of the l.h.s. of (3.15) and
function ω(λ, ξ).

To prove (3.18) we observe that

(A.7) − ∂

∂ξ

(λ− µ(ξ))(λ− γ(ξ))

R1/2(λ, γ(ξ))
+ω(λ, ξ) =

2µ′(λ− γ) + γ′(λ− µ)

2R1/2(λ, γ)
+

λ− h
R1/2(λ, γ)

.

By (3.12), 2µ′ + γ′ = −2, therefore (A.7) is in turn equivalent to

(A.8) 2µ′(ξ)γ(ξ) + γ′(ξ)µ(ξ) = −2h(ξ).

Hence to prove (3.18) amounts to proving (A.8). From (A.3) we have

(A.9) γ′(ξ) =
4b(ξ)− 4γ(ξ)

2ξ + 3γ(ξ) + c+ 2d
,

where b(ξ) is defined by (5.8). On the other hand, (3.12) implies 2µ′ = −2−γ′ and
2µ = −2ξ − γ + c + 2d. Substituting this into the l.h.s. of (A.8) and using (A.9)
yields

2µ′γ + γ′µ = −γ
′

2
(3γ + 2ξ + c+ 2d)− 2γ = −(2b− 2γ)− 2γ = −2b.

By (5.11) b(ξ) = h(ξ), which proves (A.8).

Appendix B. Uniqueness for the model problem

In this appendix we prove uniqueness for the solution of the model problem
(4.9)–(4.13), which admits weak singularities at two points on the jump contour.

Lemma B.1. Let m(p) = (m1(p),m2(p)), p ∈ M(ξ), be a solution of the problem
(4.9)-(4.13), which is holomorphic in M(ξ) \ L, L := (Σ1(ξ) ∪ Σ2 ∪ I3 ∪ I∗3 ) and
has continuous limits as p approaches any point of contour L except of two branch
points E2 := (γ(ξ),±) and E1 := (−c − 2d,±). Let m(p) = O((p − Ej)−1/4) as
p→ Ej, j = 1, 2. The solution with such properties is unique.

Proof. Let m̃ = (m̃1, m̃2) and m̆ = (m̆1, m̆2) be two solutions satisfying all condi-

tions of Lemma. Consider them as functions on the Riemann surface M̂ of the func-
tion

√
λ2 − 1. Then the contour Σ1(ξ) transforms onto two contours: I1 = [E1, E2]

on the upper sheet of M̂ , oriented in positive direction, and I∗1 on the lower
sheet, oriented in negative direction. The jump matrix for m̃ and m̆ on I1 will
be v(p) = iσ1, and on I∗1 v(p) = −iσ1.

Consider the matrix

S(p) =

(
m̃1 m̃2

m̆1 m̆2

)
and let s(p) = detS(p). Since det v(p) = 1 on Σ ∪ I ∪ I∗ ∪ I1 ∪ I∗1 then s(p)

has no jumps on M̂ and is a holomorphic function on this surface except of four
points (Ej ,±), j = 1, 2. In these points s(p) has isolated singularities of order

O((π(p) − π(Ej))
−1/2). Therefore these points on the upper and lower sheets of
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M̂ are removable singularities. We conclude that s(p) is holomorphic on M̂ and
bounded at ∞± due to normalization conditions for m̃ and m̆. By the Liouville

theorem s(p) ≡ const on M̂. The symmetry condition implies s(p) + s(p∗) = 0,

respectively at the branch points of M̂ we have s(−1) = s(1) = 0, that is s(p) = 0

as p ∈ M̂.
Therefore (m̂1(p), m̂2(p)) = c(p)(m̃1(p), m̃2(p)), where a scalar function c(p) has

no jumps on M̂, moreover, the normalization condition implies limp→∞± c(p) = 1.
Respectively for any two solutions m̆ and m̃ we have in fact m̂(∞±) = m̃(∞±).
Therefore, to prove the uniqueness of the solution of the RH problem under con-
sideration, it is sufficient to prove that the only solution m(p), satisfying the jump
condition (4.9), symmetry condition, ”vanishing condition” m(∞±) = 0, which has
”weak singularities” of order O((p− Ej)−1/4) at Ej , is the trivial solution.

Let m(p) = (m1(p),m2(p)) be a solution of this ”vanishing problem”. Consider
the weight

dΩ =
idλ√
λ2 − 1

, p = (λ,+) ∈M(ξ),

on the initial Riemann surface M(ξ), which corresponds to the model problem.
Let C be a closed contour on the upper sheet oriented counterclockwise. Since
the function f(p) := m(p)m†(p∗) has the behavior f(p) = O

(
(p− Ej)−1/2

)
at the

edges of Σ1(ξ), it is integrable and by the residue theorem

0 =

∫
C
f(p)dΩ =

∫
Σ1(ξ)

f(p)dΩ +

∫
Σ2

f(p)dΩ = J1 + J2.

The integrals along the upper and lower sides of I cancel each other due to the
jump condition (4.9). Since

√
λ2 − 1 < 0 as p ∈ Σu1 (ξ) ∪ Σl1(ξ) and idΩ > 0 as

p ∈ Σu1 (ξ) then by (4.9)

J1 = i

∫
Σu1 (ξ)

(|m1,−(p)|2 + |m2,−(p)|2)dΩ− i

∫
Σl1(ξ)

(|m1,−(p)|2 + |m2,−(p)|2)dΩ ≥ 0.

On Σ we have dΩ > 0 and m+(p) = m−(p) = m(p), therefore

J2 =

∫
Σ

‖m(p)‖2dΩ ≥ 0.

Thus m(p) = 0 on Σ1(ξ) and Σ, except of E1 and E2. Since both components of
m(p) have no jump in a neighborhood of E1, this point is an isolated singularity,
and since m(p) = O((p− Ej)−1/4), then in fact m(p) is bounded near E1.

Introduce now a new weight

dΩ1(p) =
idλ√

(λ+ 1)(λ− E1)
, p = (λ,+) ∈M(ξ).

We observe that dΩ1 > 0 as p ∈ I. Consider (note, that here we integrate m†(p),
not m†(p∗))

0 =

∫
C
m(p)m†(p)dΩ1(p) =

∫
Σ1(ξ)∪Σ

m(p)m†(p)dΩ1 + J = J,

where

J = 2 cos y

∫
I

(|m1,−|2 + |m2,−|2)dΩ1,
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with y = 2tB+∆. Since J = 0 then for those t for which cos(2tB+∆) 6= 0, we have
m−(p) = m+(p) = 0 on I. The same consideration as above then shows that m has
an isolated removable singularity at E2 too. Since m(p) = 0 on I and, respectively,
on I∗, m(p) ≡ 0.
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