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Abstract. We develop direct and inverse scattering theory for Jacobi op-
erators with steplike coefficients which are asymptotically close to different

finite-gap quasi-periodic coefficients on different sides. We give a complete

characterization of the scattering data, which allow unique solvability of the
inverse scattering problem in the class of perturbations with finite first mo-

ment.

1. Introduction

In this paper we consider direct and inverse scattering theory for Jacobi oper-
ators with steplike quasi-periodic finite-gap background, using the Marchenko [15]
approach.

Scattering theory for Jacobi operators is a classical topic with a long tradition.
Originally developed on an informal level by Case in [5], the first rigorous results
for the case of a constant background were given by Guseinov [12] with further
extensions by Teschl [19], [20]. The case of periodic backgrounds was completely
solved in [24] (who in fact handle almost periodic operators with a homogenous
Cantor type spectrum) respectively [8] using different approaches. Moreover, the
case of a steplike situation, where the coefficients are asymptotically close to two
different quasi-periodic finite-gap operators, was solved in [11] (see also [1], [7])
under the restriction that the two background operators are isospectral. It is the
purpose of the present paper to remove this restriction.

We should also mention that scattering theory for Jacobi operators is directly
applicable to the investigation of the Toda lattice with initial data in the above
mentioned classes. See for example [3], [6], [23] for steplike constant backgrounds,
and [9], [10], [13], [14], and [16] for periodic backgrounds. For further possible
applications and additional references we refer to the discussion in [11].

Finally, let us give a brief overview of the remaining sections. After recalling
some necessary facts on algebro-geometric quasi-periodic finite-gap operators in
Section 2, we construct the transformation operators and investigate the properties
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of the scattering data in Section 3. In Section 4 we derive the Gel’fand-Levitan-
Marchenko equation and show that it uniquely determines the operator. In addi-
tion, we formulate necessary conditions for the scattering data to uniquely deter-
mine our Jacobi operator. Our final Section 5 shows that our necessary conditions
for the scattering data are also sufficient.

2. Step-like finite-band backgrounds

First we need to recall some facts on quasi-periodic finite-band Jacobi operators
which contain all periodic operators as a special case. We refer to [20, Chapter 9]
and [8] for details.

Let H±q be two quasi-periodic finite-band Jacobi operators,1

(2.1) H±q f(n) = a±q (n)f(n+ 1) + a±q (n− 1)f(n− 1) + b±q (n)f(n), f ∈ `2(Z),

associated with the Riemann surface of the square root

(2.2) P±(z) = −
2g±+1∏
j=0

√
z − E±j , E±0 < E±1 < · · · < E±2g±+1,

where g± ∈ N and √. is the standard root with branch cut along (−∞, 0). In fact,

H±q are uniquely determined by fixing a Dirichlet divisor
∑g±

j=1(µ±j , σ
±
j ), where

µ±j ∈ [E±2j−1, E
±
2j ] and σ±j ∈ {−1, 1}. The spectra of H±q consist of g± + 1 bands

(2.3) σ± := σ(H±q ) =
g±⋃
j=0

[E±2j , E
±
2j+1].

We will identify the set C \ σ(H±q ) with the upper sheet of the Riemann surface.
The upper and lower sides of the cuts over the spectrum are denoted by σu and σl

and the symmetric points on these cuts by λu and λl, that is,

f(λu) = lim
ε↓0

f(λ+ iε), f(λl) = lim
ε↓0

f(λ− iε), λ ∈ σ±.

We will develop the scattering theory for the operator

(2.4) Hf(n) = a(n− 1)f(n− 1) + b(n)f(n) + a(n)f(n+ 1), n ∈ Z,

whose coefficients are asymptotically close to the coefficients of H±q on the corre-
sponding half-axes:

(2.5)
±∞∑
n=0

|n|
(
|a(n)− a±q (n)|+ |b(n)− b±q (n)|

)
<∞.

The special case H−q = H+
q has been exhaustively studied in [8] (see also [24]) and

the case where H−q and H+
q are in the same isospectral class σ− = σ+ was treated

in [11]. Several results are straightforward generalizations, in such situations we
will simply refer to [8], [11] and only point out possible differences.

Let ψ±q (z, n) be the Floquet solutions of the spectral equations

(2.6) H±q ψ(n) = zψ(n), z ∈ C,

1Everywhere in this paper the sub or super index ”+” (resp. ”−”) refers to the background on
the right (resp. left) half-axis.
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that decay for z ∈ C \ σ± as n→ ±∞. They are uniquely defined by the condition
ψ±q (z, 0) = 1, ψ±q (z, ·) ∈ `2(Z±). The solution ψ+

q (z, n) (resp. ψ−q (z, n)) coincides
with the upper (resp. lower) branch of the Baker–Akhiezer functions of H+

q (resp.
H−q ), see [20]. The second solutions ψ̆±q (z, n) are given by the other branch of
the Baker–Akhiezer functions and satisfy ψ̆±q (z, ·) ∈ `2(Z∓) as z ∈ C \ σ±. Their
Wronskian is equal to

(2.7) W±q (ψ̆±q (z), ψ±q (z)) = ± 1
ρ±(z)

,

where

(2.8) ρ±(z) =

∏g±
j=1(z − µ±j )
P±(z)

satisfy by our choice of the branch for the square root

(2.9) Im(ρ±(λu)) > 0, Im(ρ±(λl)) < 0, λ ∈ σ±.

In (2.7) the following notation is used

(2.10) W±q,n(f, g) := a±q (n) (f(n)g(n+ 1)− f(n+ 1)g(n)) .

Note that ψ±q (z, n), ψ̆±q (z, n) have continuous limits as z → λu,l ∈ σu,l
± \ ∂σ±,

where
∂σ± = {E±0 , ..., E

±
2g±+1},

and they satisfy the symmetry property

(2.11) ψ±q (λl, n) = ψ±q (λu, n) = ψ̆±q (λu, n), λ ∈ σ±.

The points (µ±j , σ
±
j ), 1 ≤ j ≤ g±, form the divisors of poles of the Baker–

Akhiezer functions. Correspondingly, the sets of Dirichlet eigenvalues {µ±1 , ..., µ±g±}
can be divided in three disjoint subsets

M± = {µ±j |µ
±
j ∈ R\σ± is a pole of ψ±q (z, 1)},

M̆± = {µ±j |µ
±
j ∈ R\σ± is a pole of ψ̆±q (z, 1)},

M̂± = {µ±j |µ
±
j ∈ ∂σ±}.

(2.12)

In order to remove the singularities of ψ±q (z, n), ψ̆±q (z, n) we introduce

δ±(z) :=
∏

µ±j ∈M±

(z − µ±j ),

δ̂±(z) :=
∏

µ±j ∈M±

(z − µ±j )
∏

µ±j ∈M̂±

√
z − µ±j ,

δ̆±(z) :=
∏

µ±j ∈M̆±

(z − µ±j )
∏

µ±j ∈M̂±

√
z − µ±j ,

(2.13)

where
∏

= 1 if there are no multipliers, and set

(2.14) ψ̃±q (z, n) = δ±(z)ψ±q (z, n), ψ̂±q (z, n) = δ̂±(z)ψ±q (z, n).

Lemma 2.1. The Floquet solutions ψ±q , ψ̆±q have the following properties:
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(i) The functions ψ±q (z, n) (resp. ψ̆±q (z, n)) are holomorphic as functions of z
in the domain C\ (σ±∪M±) (resp. C\ (σ±∪M̆±)), take real values on the
set R \ σ±, and have simple poles at the points of the set M± (resp. M̆±).
They are continuous up to the boundary σu

± ∪ σl
± except at the points in

M̂± and satisfy the symmetry property (2.11). For E ∈ M̂±, they satisfy

ψ±q (z, n) = O

(
1√
z − E

)
, ψ̆±q (z, n) = O

(
1√
z − E

)
, z → E ∈ M̂±.

Moreover, the estimate

(2.15) ψ̂±q (z, n)− ψ̂±q (E,n) = O(
√
z − E), E ∈ ∂σ±,

is valid.
(ii) The following asymptotic expansions hold as z → ±∞

(2.16) ψ±q (z, n) = z∓n
( n−1∏

∗

j=0

a±q (j)
)±1(

1± 1
z

n−1∑
∗

j=0

b±q (j + 1
0 ) +O(

1
z2

)
)
,

where

n−1∏
∗

j=n0

f(j) =



n−1∏
j=n0

f(j), n > n0,

1, n = n0,
n0−1∏
j=n

f(j)−1, n < n0,

n−1∑
∗

j=n0

f(j) =



n−1∑
j=n0

f(j), n > n0,

0, n = n0,

−
n0−1∑
j=n

f(j), n < n0.

(iii) The functions ψ±q (λ, n) form a complete orthogonal system on the spectrum
with respect to the weight

(2.17) dω±(λ) =
1

2πi
ρ±(λ)dλ,

namely

(2.18)
∮
σ±

ψ±q (λ,m)ψ±q (λ, n)dω±(λ) = δ(n,m),

where

(2.19)
∮
σ±

f(λ)dλ :=
∫
σu
±

f(λu)dλ−
∫
σl
±

f(λl)dλ.

Here δ(n,m) = 1 if n = m and δ(n,m) = 0 else is the Kronecker delta.

3. Scattering data

Now let H be a steplike operator with coefficients a(n), b(n) satisfying (2.5).
The two solutions ψ±(z, n) of the spectral equation

(3.1) Hψ = zψ, z ∈ C,
which are asymptotically close to the Floquet solutions ψ±q (z, n) of the background
equations (2.6) as n→ ±∞, are called Jost solutions. They can be represented as
(see [8])

(3.2) ψ±(z, n) =
±∞∑
m=n

K±(n,m)ψ±q (z,m),
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where the functions K±(n, .) are real valued and satisfy the estimate
(3.3)

|K±(n,m)| ≤ C±(n)
±∞∑

j=[m+n
2 ]

(
|a(j)− a±q (j)|+ |b(j)− b±q (j)|

)
, ±m > ±n > 0.

The functions C±(n) > 0 decrease monotonically as n→ ±∞. Moreover, we have

a(n) = a+
q (n)

K+(n+ 1, n+ 1)
K+(n, n)

,

a(n) = a−q (n)
K−(n, n)

K−(n+ 1, n+ 1)
,

b(n) = b+q (n) + a+
q (n)

K+(n, n+ 1)
K+(n, n)

− a+
q (n− 1)

K+(n− 1, n)
K+(n− 1, n− 1)

,

b(n) = b−q (n) + a−q (n− 1)
K−(n, n− 1)
K−(n, n)

− a−q (n)
K−(n+ 1, n)

K−(n+ 1, n+ 1)
,

(3.4)

which implies (cf. [8]) the following asymptotic behavior of the Jost solutions as
z → ±∞ using (3.2), (2.16),
(3.5)

ψ±(z, n) = z∓nK±(n, n)
( n−1∏

∗

j=0

a±q (j)
)±1(

1+
(
B±(n)±

n∑
∗

j=1

b±q (j− 0
1 )
)1
z

+O(
1
z2

)
)
,

where

(3.6) B±(n) =
±∞∑

m=n±1

(b±q (m)− b(m)).

For λ ∈ σu
± ∪ σl

± a second pair of solutions of (3.1) is given by

(3.7) ψ̆±(λ, n) =
±∞∑
m=n

K±(n,m)ψ̆±q (λ,m), λ ∈ σu
± ∪ σl

±,

which cannot be continued to the complex plane. Note that ψ̆±(λ, n) = ψ±(λ, n),
λ ∈ σ±, and from (2.5), (3.2) we conclude

(3.8) W (ψ±(λ), ψ±(λ)) = W±q (ψ̆±q (λ), ψ±q (λ)) = ±ρ±(λ)−1.

The Jost solutions ψ± are holomorphic in the domains C\(σ± ∪M±) and inherit
almost all properties of their background counterparts listed in Lemma 2.1. As
before, we set

(3.9) ψ̃±(z, n) = δ±(z)ψ±(z, n), ψ̂±(z, n) = δ̂±(z)ψ±(z, n).

The following Lemma is proven in [8].

Lemma 3.1. The Jost solutions have the following properties.
(i) For all n, the functions ψ±(z, n) are holomorphic in the domain C \ (σ± ∪

M±) with respect to z and continuous up to the boundary (σu
±∪σl

±)\∂σ±,
where

(3.10) ψ±(λu, n) = ψ±(λl, n), λ ∈ (σu
± ∪ σl

±) \ ∂σ±.
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The functions ψ±(z, n) are real valued for z ∈ R\σ± and have simple poles
at µj ∈M±. Moreover, ψ̂± are continuous up to the boundary σu

± ∪ σl
±.

(ii) At the band edges we have for λ ∈ σu,l
±

(3.11)
ψ±(λ, n)− ψ±(λ, n) = o(1), E ∈ ∂σ± \ M̂±,
ψ±(λ, n) + ψ±(λ, n) = o

(
1√
λ−E

)
, E ∈ M̂±.

Next, we introduce the sets

(3.12) σ(2) := σ+ ∩ σ−, σ
(1)
± = clos (σ± \ σ(2)), σ := σ+ ∪ σ−,

where σ is the (absolutely) continuous spectrum of H and σ(1)
+ ∪ σ

(1)
− resp. σ(2) are

the parts which are of multiplicity one resp. two. We will denote the interior of the
spectrum by int(σ), that is, int(σ) := σ \ ∂σ.

In addition to the continuous part, H has a finite number of eigenvalues situated
in the gaps, σd = {λ1, ..., λp} ⊂ R \ σ (see, e.g., [18]). For every eigenvalue we
introduce the corresponding norming constants

(3.13) γ−1
±,k =

∑
n∈Z
|ψ̃±(λk, n)|2, 1 ≤ k ≤ p.

Moreover, ψ̃±(λk, n) = c±k ψ̃∓(λk, n) with c+k c
−
k = 1.

Let

(3.14) W (z) := W (ψ−(z), ψ+(z))

be the Wronskian of two Jost solutions. This function is meromorphic in the domain
C \ σ with possible poles at the points M+ ∪M− ∪ (M̂+ ∩ M̂−) and with possible
square root singularities at the points M̂+ ∪ M̂− \ (M̂+ ∩ M̂−). Set

(3.15) W̃ (z) = W (ψ̃−(z), ψ̃+(z)), Ŵ (z) = W (ψ̂−(z), ψ̂+(z)),

then Ŵ (λ) is holomorphic in the domain C\R and continuous up to the boundary.
But unlike to W (z) and W̃ (z), the function Ŵ (λ) may not take real values on the
set R \ σ and complex conjugated values on the different sides of the spectrum.
That is why it is more convenient to characterize the spectral properties of the
operator H by means of the function W̃ , which can have singularities at the points
of the sets M̂+ ∪ M̂−. We will study the precise character of these singularities in
Lemma 3.2 below.

Note that outside the spectrum the function W̃ (z) vanishes precisely at the
eigenvalues. However, it might also vanish inside the spectrum at points in ∂σ− ∪
∂σ+. We will call such points virtual levels of the operator H,

(3.16) σv := {E ∈ σ : Ŵ (E) = 0},

and we will show that σv ⊆ ∂σ ∪ (∂σ(1)
+ ∩ ∂σ(1)

− ) in Lemma 3.2. All other points E
of the set ∂σ+ ∪ ∂σ− correspond to the generic case Ŵ (E) 6= 0.

Our next aim is to derive the properties of the scattering matrix. Introduce the
scattering relations

(3.17) T∓(λ)ψ±(λ, n) = ψ∓(λ, n) +R∓(λ)ψ∓(λ, n), λ ∈ σu,l
∓ ,

where the transmission and reflection coefficients are defined as usual,

(3.18) T±(λ) :=
W (ψ±(λ), ψ±(λ))
W (ψ∓(λ), ψ±(λ))

, R±(λ) := −W (ψ∓(λ), ψ±(λ))
W (ψ∓(λ), ψ±(λ))

, λ ∈ σu,l
± .
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The equalities in (3.18) imply the identity
1

T+(λ)ρ+(λ)
=

1
T−(λ)ρ−(λ)

= W (λ), λ ∈ σ(2),

where W (λ) is the Wronskian of two Jost solutions (3.14). This Wronskian plays
an important role in the characterization of the properties of the scattering matrix.
Namely, the following result is valid.

Lemma 3.2. The entries of the scattering matrix have the following properties:
I.

(a) T±(λu) = T±(λl), λ ∈ σ±,
R±(λu) = R±(λl), λ ∈ σ±,

(b)
T±(λ)
T±(λ)

= R±(λ), λ ∈ σ(1)
± ,

(c) 1− |R±(λ)|2 =
ρ±(λ)
ρ∓(λ)

|T±(λ)|2, λ ∈ σ(2),

(d) R±(λ)T±(λ) +R∓(λ)T±(λ) = 0, λ ∈ σ(2).

II. The functions T±(λ) can be extended analytically to the domain C\(σ∪M±∪
M̆±) and satisfy

(3.19)
1

T+(z)ρ+(z)
=

1
T−(z)ρ−(z)

= W (z).

The function W (z) has the following properties:
(a) The function W̃ (z) = δ+(z)δ−(z)W (z) is holomorphic on C \ σ with simple

zeros at the eigenvalues λk, where

(3.20)
(
dW̃

dz
(λk)

)2

=
1

γ+,kγ−,k
.

Moreover,

(3.21) W̃ (λu) = W̃ (λl), λ ∈ σ, W̃ (z) ∈ R, z ∈ R \ σ.

(b) The function Ŵ (z) = δ̂+(z)δ̂−(z)W (z) is continuous on the set C\σ up to the
boundary σu∪σl. It can have zeros on the set ∂σ∪(∂σ(1)

+ ∩∂σ
(1)
− ) and does not vanish

at the other points of the spectrum σ. If Ŵ (E) = 0 as E ∈ ∂σ ∪ (∂σ(1)
+ ∩ ∂σ(1)

− ),
then

(3.22)
1

Ŵ (λ)
= O

(
1√
λ− E

)
, for λ ∈ σ close to E.

Moreover,

(3.23)
1

Ŵ (z)
= O

(
(z − E)−1/2−ε

)
, for z close to E.

(c) In addition,

(3.24) T+(∞) = T−(∞) > 0.

III. (a) The reflection coefficients R±(λ) are continuous functions on int(σu,l
± ).

(b) If E ∈ ∂σ+ ∩ ∂σ− and Ŵ (E) 6= 0, then the functions R±(λ) are also
continuous at E. Moreover,

(3.25) R±(E) =
{
−1 for E /∈ M̂±,
1 for E ∈ M̂±.
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Proof. I. The symmetry property (a) follows from formulas (3.18) and (3.10). For
(b), use (3.18) and observe that ψ∓(λ) are real valued for λ ∈ int(σ(1)

± ). Let
λ ∈ int(σ(2)). By (3.17),

|T±|2W (ψ∓, ψ∓) = (|R±|2 − 1)W (ψ±, ψ±),

and property (c) follows from (3.8). The consistency condition (d) can be derived
directly from definition (3.18).

II. The identity (3.19) follows from (3.18). (a) The Wronskian inherits the
properties of ψ±(z), so it remains to show (3.20). If Ŵ (z0) = 0 for z0 ∈ C \σ, then

(3.26) ψ̃±(z0, n) = c±ψ̃∓(z0, n)

for some constants c± (depending on z0), which satisfy c−c+ = 1. In particular,
each zero of W̃ (or Ŵ ) outside the continuous spectrum is a point of the discrete
spectrum of H and vice versa.

Let γ±,j be the norming constants defined in (3.13) for some point of the discrete
spectrum λj . By virtue of [20], Lemma 2.4,

d

dz
W (ψ̃−(z), ψ̃+(z))

∣∣∣
λj

= Wn(ψ̃−(λj), ddz ψ̃+(λj)) +Wn( ddz ψ̃−(λj), ψ̃+(λj))

= −
∑
k∈Z

ψ̃−(λj , k)ψ̃+(λj , k) = − 1
c±j γ±,j

.(3.27)

Since c−j c
+
j = 1, we obtain (3.20).

(b) Continuity of Ŵ up to the boundary follows from the corresponding property
of ψ̂±(z, n). We begin with the investigation of the possible zeros of this function
on the spectrum.

First let λ0 ∈ int(σ(2)) := σ(2) \ ∂σ(2), that is, δ̂− 6= 0 and δ̂+ 6= 0. Sup-
pose W (λ0) = 0, then ψ+(λ0, n) = c ψ−(λ0, n) and ψ+(λ0, n) = c̄ ψ−(λ0, n), i.e.
W (ψ+, ψ+) = |c|2W (ψ−, ψ−). But this implies opposite signs for ρ+, ρ− by (3.8),
sign ρ+(λ0) = − sign ρ−(λ0), which contradicts (2.9).

Let λ0 ∈ int(σ(1)
± ) and W̃ (λ0) = 0. The point λ0 can coincide with a pole

µ ∈ M∓. But ψ±(λ0, n) and ψ±(λ0, n) are linearly independent and bounded,
and ψ̃∓(λ0, n) ∈ R. If W (λ0) = 0, then ψ̃∓ = c±1 ψ± = c±2 ψ± which implies
W (ψ±, ψ±)(λ0) = 0, a contradiction.

In the general mutual location of the background spectra the case λ0 = E ∈
(∂σ(2) ∩ int(σ±)) ⊂ int(σ) can occur. If Ŵ (E) = 0, then W (ψ±, ψ̂∓)(E) = 0,
where ψ̂∓ are defined by (3.9). The values of ψ̂∓(E, ·) are either purely real or
purely imaginary, therefore W (ψ±, ψ̂∓)(E) = 0, that is, ψ±(E,n) and ψ±(E,n) are
linearly dependent, which is impossible at inner points of the set σ±.

Thus, the virtual level σv of H defined in (3.16) can only be located on the set
∂σ− ∩ ∂σ+, that is,

(3.28) σv ⊆ ∂σ ∪
(
∂σ

(1)
− ∩ ∂σ

(1)
+

)
.

To prove (3.22), take E ∈ σv and assume for example E ∈ σ+. By (3.17) and
(3.19),

δ̂+(λ)ψ̂−(λ, n)

δ̂−(λ)ρ+(λ)W (λ)
= δ̂+(λ)ψ+(λ, n) +R+(λ)ψ̂+(λ, n).
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Choose n0 such that ψ̂−(E,n0) 6= 0. By continuity we also have ψ̂−(λ, n0) 6= 0 in
a small vicinity of E. Then

δ̂+(λ)ψ+(λ, n0) +R+(λ)ψ̂+(λ, n0)

ψ̂−(λ, n0)
= O(1), λ→ E.

Accordingly,

1
Ŵ (λ)

= O

(∏g+
j=1(λ− µ+

j )

δ̂2
+(λ)

√
λ− E

)
= O

(
1√
λ− E

)
, λ ∈ σ+,

which proves (3.22). To see (3.23) note that

g(z, n) =
ψ+(z, n)ψ−(z, n)

W (z)

is a Herglotz function. Moreover, we can assume that µj 6= E and choose n such
that ψ±(E,n0) 6= 0. Hence it remains to show the corresponding estimate for g(z) =
g(z, n0). Since the continuous spectrum of H is purely absolutely continuous, we
deduce from Stieltjes inversion formula that

g(z) =
1
π

∫ E+δ

E−δ

Im(g(λ))
λ− z

dλ+ g̃(z), δ > 0,

where g̃(z) is holomorphic near E. By (3.22) we infer (λ − E)1/2+εIm(g(λ)) is
Hölder continuous and the result follows from [17, Eq. (29.8)].

(c) Equation (3.24) follows from (3.5).
III. (a) follows from the corresponding properties of ψ±(z) and from II, (b). To

show III, (b) we use that by (3.18) the reflection coefficients have the representation

(3.29) R±(λ) = −W (ψ±(λ), ψ∓(λ))
W (ψ±(λ), ψ∓(λ))

= ∓W (ψ±(λ), ψ∓(λ))
W (λ)

and are continuous on both sides of the set int(σ±) \ (M∓ ∪ M̂∓). Moreover,

|R±(λ)| =
∣∣∣∣W (ψ̂±(λ), ψ̂∓(λ))

Ŵ (λ)

∣∣∣∣,
where the denominator does not vanish on the set σ± \ σv. Hence R±(λ) are
continuous on this set since both numerator and denominator are.

Next, let E ∈ ∂σ± \ σv (in particular Ŵ (E) 6= 0). Then, if E /∈ M̂±, we use
(3.29) in the form

(3.30) R±(λ) = −1∓ δ̂±(λ)W (ψ±(λ)− ψ±(λ), ψ̂∓(λ))
Ŵ (λ)

,

which shows R±(λ) → −1 since ψ±(λ) − ψ±(λ) → 0 by Lemma 3.1, (2). This
settles the first case in (3.25). Similarly, if E ∈ M̂±, we use (3.29) in the form

(3.31) R±(λ) = 1± δ̂±(λ)W (ψ±(λ) + ψ±(λ), ψ̂∓(λ))
Ŵ (λ)

,

which shows R±(λ)→ 1 since δ̂±(λ) = O(
√
λ− E) and ψ±(λ) +ψ±(λ) = o

(
1√
λ−E

)
by Lemma 3.1, (2). This settles the second case in (3.25) as well. �
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4. The Gel’fand-Levitan-Marchenko equation

The aim of this section is to derive the inverse scattering problem equation (the
Gel’fand-Levitan-Marchenko equation) and to discuss some additional properties
of the scattering data which are consequences of this equation.

Theorem 4.1. The inverse scattering problem (the GLM) equation has the form

(4.1) K±(n,m) +
±∞∑
l=n

K±(n, l)F±(l,m) =
δ(n,m)
K±(n, n)

, ±m ≥ ±n,

where

F±(m,n) =
∮
σ±

R±(λ)ψ±q (λ,m)ψ±q (λ, n)dω±

+
∫
σ

(1),u
∓

|T∓(λ)|2ψ±q (λ,m)ψ±q (λ, n)dω∓ +
p∑
k=1

γ±,kψ̃
±
q (λk, n)ψ̃±q (λk,m).(4.2)

Proof. Consider a closed contour Γε consisting of a large circular arc and some
contours inside this arc, which envelope the spectrum σ at a small distance ε from
the spectrum. Let ±m ≥ ±n. The residue theorem, (2.17), (3.5), (3.20), and
equality ψ̃∓(λk, n) = c∓j ψ̃±(λk, n) imply

1
2πi

∮
Γε

ψ∓(λ, n)ψ±q (λ,m)
W (λ)

dλ =
δ(n,m)
K±(n, n)

+
p∑
k=1

Resλk

(
ψ̃∓(λ, n)ψ̃±q (λ,m)

W̃ (λ)

)

=
δ(n,m)
K±(n, n)

−
p∑
k=1

γ±,kψ̃±(λk, n)ψ̃±q (λk,m),(4.3)

since the integrand is meromorphic on C\σ with simple poles at the eigenvalues
λk and at ∞ if m = n. It is continuous till the boundary except at the points
E ∈ ∂σ+ ∪ ∂σ− where

(4.4)
ψ∓(λ, n)ψ±q (λ,m)

W (λ)
= O

(
1√
λ− E

)
, E ∈ ∂σ+ ∪ ∂σ−,

by (3.22). On the other hand, as ε→ 0,

1
2πi

∮
σ

ψ∓(λ, n)ψ±q (λ,m)
W (λ)

dλ =

=
1

2πi

∮
σ±

(
ψ±(λ, n) +R±(λ)ψ±(λ, n)

)
ψ±q (λ,m)

T±(λ)W (λ)
dλ

+
1

2πi

∮
σ

(1)
∓

ψ∓(λ, n)ψ±q (λ,m)
W (λ)

dλ

=
∮
σ±

ψ±(λ, n)ψ±q (λ,m)dω± +
∮
σ±

R±(λ)ψ±(λ, n)ψ±q (λ,m)dω±

+
1

2πi

∫
σ

(1),u
∓

ψ±q (λ,m)
(
ψ∓(λ, n)
W (λ)

− ψ∓(λ, n)
W (λ)

)
dλ.

(4.5)
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It remains to treat the last integrand. By (3.17) and Lemma 3.2, I,

ψ∓(λ, n) = T∓(λ)ψ±(λ, n)−R∓(λ)ψ∓(λ, n) = T∓(λ)ψ±(λ, n)− T∓(λ)
T∓(λ)

ψ∓(λ, n),

and therefore

ψ∓(n)
W

− ψ∓(n)
W

=
WT∓ +WT∓

|W |2T∓
ψ∓(n)− T∓

W
ψ±(n) = −T∓

W
ψ±(n),

since WT∓ +WT∓ = 2Re(WT∓) = 0 on σ∓. In summary, (4.3) and (4.5) yield

δ(n,m)
K±(n, n)

= K±(n,m) +
∮
σ±

R±(λ)ψ±(λ, n)ψ±q (λ,m)dω±

+
∫
σ

(1),u
∓

|T∓(λ)|2ψ±(λ, n)ψ±q (λ,m)dω∓ +
p∑
j=1

γ±,jψ̃±(λj , n)ψ̃±q (λj ,m),

and applying (3.2) finishes the proof. �

As it is shown in [8], the estimate (3.3) for K±(n,m) implies the following esti-
mates for F±(n,m).

Lemma 4.2. The kernel of the GLM equation satisfies the following properties.
IV. There exist functions C±(n) > 0 and q±(n) ≥ 0, n ∈ Z±, such that C±(n)
decay as n→ ±∞, |n|q(n) ∈ `1(Z±), and

|F±(n,m)| ≤ C±(n)
±∞∑

j=n+m

q(j),

±∞∑
n=n0

|n|
∣∣F±(n, n)− F±(n± 1, n± 1)

∣∣ <∞,
±∞∑
n=n0

|n|
∣∣a±q (n)F±(n, n+ 1)− a±q (n− 1)F±(n− 1, n)

∣∣ <∞.
(4.6)

In summary, we have obtained the following necessary conditions for the scat-
tering data:

Theorem 4.3. The scattering data

S =
{
R+(λ), T+(λ), λ ∈ σu,l

+ ; R−(λ), T−(λ), λ ∈ σu,l
− ;

λ1, . . . , λp ∈ R \ (σ+ ∪ σ−), γ±,1, . . . , γ±,p ∈ R+

}(4.7)

satisfy the properties I-III listed in Lemma 3.2. The functions F±(n,m), defined
in (4.2), satisfy property IV in Lemma 4.2.

In fact, the conditions on the scattering data given in Theorem 4.3 are both
necessary and sufficient for the solution of the scattering problem in the class (2.5).
The sufficiency of these conditions as well as the algorithm for the solution of the
inverse problem will be discussed in the next section.
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5. The inverse scattering problem

Let H±q be two arbitrary quasi-periodic Jacobi operators associated with se-
quences a±q (n), b±q (n) as introduced in Section 2. Let S be given scattering data
with corresponding kernels F±(n,m) satisfying the necessary conditions of Theo-
rem 4.3.

First we show that the GLM equations (4.1) can be solved for K±(n,m) if
F±(n,m) are given.

Lemma 5.1. Under condition IV, the GLM equations (4.1) have unique real-valued
solutions K±(n, ·) ∈ `1(n,±∞) satisfying the estimates

(5.1) |K±(n,m)| ≤ C±(n)
±∞∑

j=[n+m
2 ]

q(j), ±m > ±n.

Here the functions q±(n) and C±(n) are of the same type as in (4.6).
Moreover, the following estimates are valid

±∞∑
n=n0

|n|
∣∣K±(n, n)−K±(n± 1, n± 1)

∣∣ <∞,
±∞∑
n=n0

|n|
∣∣a±q (n)K±(n, n+ 1)− a±q (n− 1)K±(n− 1, n)

∣∣ <∞.(5.2)

Proof. The solvability of (4.1) under condition (4.6) and the estimates (5.1), (5.2)
follow completely analogous to the corresponding result in [8, Theorem 7.5]. To
prove uniqueness, first note that the GLM equations are generated by compact
operators. Thus, it is sufficient to prove that the equation

(5.3) f(m) +
±∞∑
`=n

F±(`,m)f(`) = 0

has only the trivial solution in the space `1(n,±∞). The proof is similar for the
”+” and ”−” cases, hence we give it only for the ”+” case. Let f(`), ` > n, be a
nontrivial solution of (5.3) and set f(`) = 0 for ` ≤ n. Since F+(`, n) is real-valued,
we can assume that f(`) is real-valued. Abbreviate by

(5.4) f̂(λ) =
∑
m∈Z

ψ+
q (λ,m)f(m)

the generalized Fourier transform, generated by the spectral decomposition (2.18)
(cf. [22]). Recall that f̂(λ) ∈ L1

loc(σ
u
+ ∪ σl

+).
Multiplying (5.3) by f(m), summing over m ∈ Z, and applying (2.18), (4.2),

(5.4), and condition I, (a), we have

2
∫
σu+

|f̂(λ)|2dω+(λ) + 2Re
∫
σu+

R+(λ)f̂(λ)2dω+(λ)

+
∫
σ

(1),u
−

f̂(λ)2|T−(λ)|2dω−(λ) +
p∑
k=1

γ+,k

(∑
n∈Z

ψ̃+
q (λk, n)f(n)

)2

= 0.
(5.5)
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The last two summands in (5.5) are nonnegative since f̂(λ) ∈ R for λ ∈ σ(1)
− and

ψ̃+
q (λk) ∈ R. We estimate the first two integrands by

|f̂(λ)|2 + ReR+(λ)f̂(λ)2 ≥ |f̂(λ)|2 − |R+(λ)f̂(λ)2| ≥
(
1− |R+(λ)|

)
|f̂(λ)|2

and drop the last summand in (5.5), thus obtaining

(5.6) 2
∫
σ(2),u

(1− |R+(λ)|)|f̂(λ)|2dω+(λ) +
∫
σ

(1),u
−

f̂(λ)2|T−(λ)|2dω−(λ) ≤ 0.

Here we also used that∫
σ

(1),u
+

(1− |R+(λ)|)|f̂(λ)|2dω+(λ) = 0,

which follows from condition I, (b). Since |R+(λ)| < 1 for λ ∈ int(σ(2)) and
ω−(λ) > 0 for λ ∈ int(σ(1)

− ) we conclude that

f̂(λ) = 0 for λ ∈ σ(2) ∪ σ(1)
− = σ−.

The function f̂(z) can be defined by formula (5.4) as a meromorphic function on
C \ σ+. By our analysis it is even meromorphic on C \ σ(1)

+ and vanishes on σ−.
Thus f̂(z) and hence also f(m) are equal to zero. �

Next, define the sequences a±, b± by

a+(n) = a+
q (n)

K+(n+ 1, n+ 1)
K+(n, n)

,

a−(n) = a−q (n)
K−(n, n)

K−(n+ 1, n+ 1)
,

b+(n) = b+q (n) + a+
q (n)

K+(n, n+ 1)
K+(n, n)

− a+
q (n− 1)

K+(n− 1, n)
K+(n− 1, n− 1)

,

b−(n) = b−q (n) + a−q (n− 1)
K−(n, n− 1)
K−(n, n)

− a−q (n)
K−(n+ 1, n)

K−(n+ 1, n+ 1)
,

(5.7)

and note that estimate (5.2) implies

(5.8) n
{
|a±(n)− a±q (n)|+ |b± − b±q (n)|

}
∈ `1(Z±).

Lemma 5.2. The functions ψ±(z, n), defined by

(5.9) ψ±(z, n) =
±∞∑
m=n

K±(n,m)ψ±q (z,m),

solve the equations

(5.10) a±(n− 1)ψ±(z, n− 1) + b±(n)ψ±(z, n) + a±(n)ψ±(z, n+ 1) = zψ±(z, n),

where a±(n), b±(n) are defined by (5.7).

Proof. Consider the two operators2

(H±y)(n) = a±(n− 1)y±(n− 1) + b±(n)y±(n) + a±(n)y±(n+ 1), n ∈ Z.

2We don’t know that H± is limit point at ∓∞ yet, but this will not be used.
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Define two discrete integral operators

(K±f) (n) =
±∞∑
m=n

K±(n,m)f(m).

Then (cf. [8]) the following identity is valid

H±K± = K±H±q ,
which implies (5.10). �

The remaining problem is to show that a+(n) ≡ a−(n), b+(n) ≡ b−(n) under
conditions II and III on the scattering data S.

Theorem 5.3. Let the scattering data S, defined as in (4.7), satisfy conditions I,
(a)–(c), II, III, (a), and IV. Then each of the GLM equations (4.1) has unique
solutions K±(n,m), satisfying the estimate (5.2). The functions a±(n), b±(n), de-
fined by (5.7), satisfy (5.8).

Under the additional conditions III, (b) and I, (d), these functions coincide,
a+(n) ≡ a−(n) = a(n), b+(n) ≡ b−(n) = b(n), and the data S are the scattering
data for the Jacobi operator associated with the sequences a(n), b(n).

The proof of Theorem 5.3 takes up the remaining section and is split into several
lemmas for the convenience of the reader.

To prove uniqueness of the reconstructed potential we follow the method pro-
posed in [15]. Recall that, by Lemma 2.1 (iii), the functions ψ±q (λ, n) form an
orthonormal basis with corresponding generalized Fourier transform. Split the ker-
nel of the GLM equation (4.2) into three summands F±(m,n) = Fr,±(m,n) +
Fh,±(m,n) + Fd,±(m,n) and set

(5.11) G±(n,m) :=
±∞∑
l=n

K±(n, l)Fr,±(l, n).

Then one obtains as in [8, Theorem 8.2] that the functions h∓(λ, n), defined by

h∓(λ, n) =
1

T±(λ)

(
ψ̆±q (λ, n)
K±(n, n)

+
∓∞∑

m=n∓1

G±(n,m)ψ̆±q (λ,m)

∓
∫
σ

(1),u
∓

|T∓(ξ)|2ψ±(ξ, n)
W±q,n−1(ψ±q (ξ), ψ̆±q (λ))

ξ − λ
dω∓(ξ)

±
p∑
k=1

γ±,kψ̃±(λk, n)
W±q,n−1(ψ̃±q (λk), ψ̆±q (λ))

λ− λk

)
,

(5.12)

satisfy

(5.13) T±(λ)h∓(λ, n) = ψ±(λ, n) +R±(λ)ψ±(λ, n), λ ∈ σu,l± .

Despite the fact that h∓(λ, n) are defined via the background solutions cor-
responding to the opposite half-axis Z±, they share a series of properties with
ψ∓(λ, n). Namely, we prove

Lemma 5.4. Let h∓(z, n) be defined by formula (5.12) on the set σu,l
± .

(i) The functions h̃∓(z, n) = δ∓(z)h∓(z, n) admit analytic extensions to the
domain C \ σ.
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(ii) The functions h̃∓(z, n) are continuous up to the boundary σu,l except pos-
sibly at the points ∂σ+ ∪ ∂σ−. Furthermore,

h̃∓(λu, n) = h̃∓(λl, n) ∈ R, λ ∈ R \ σ∓,

h̃∓(λu, n) = h̃∓(λl, n), λ ∈ int(σ∓).
(5.14)

(iii) For large z the functions h∓(z, n) have the following asymptotic behavior

(5.15) h∓(z, n) =
z±n

K±(n, n)T±(∞)

( n−1∏
∗

j=0

a±q (j)
)∓1(

1 +O(
1
z

)
)
, z →∞.

(iv) We have

W±(h∓(z), ψ±(z)) :=a±(n)
(
h∓(z, n)ψ±(z, n+ 1)− h∓(z, n+ 1)ψ±(z, n)

)
≡±W (z),

where W (z) is defined by (3.19).

Remark 5.5. Note that we did not establish the connection between the function
W (z) and the functions W±(ψ+(z, n), ψ−(z, n)), which can depend on n, because
ψ+ and ψ− are the solutions of Jacobi equations corresponding to possibly different
operators H+ and H−.

Proof. (i). To show that h̃∓(z, n) have analytic extensions to C \ σ, we study each
term in (5.12) separately.

First of all, note that due to the representation

(5.16) T±(z) =
1

ρ±(z)W (z)
=
δ̂∓(z)

δ̆±(z)

√∏2g±+1
j=0 (z − E±j )

Ŵ (z)
,

the functions ζ̃∓(z, n) = δ∓(z)ζ∓(z, n), where

(5.17) ζ∓(z, n) :=
ψ̆±q (z, n)
T±(z)

,

can be continued analytically to C \ σ. This also holds for the second term since
G±(n, ·) ∈ `1(Z) are real-valued.

Next we discuss the properties of the Cauchy-type integral in the representation
(5.12). We represent the third summand in (5.12) multiplied by T−1

± (z) as

(5.18) Θ∓(z, n) := ∓ 1
2πi

∫
σ

(1),u
∓

θ∓(z, ξ, n)
dξ

ξ − z
,

where

θ∓(z, ξ, n) = − δ∓(ξ)2

ρ∓(ξ)|W̃ (ξ)|2
ψ̃±(ξ, n)W±q,n−1(ψ̃±q (ξ, ·), ζ∓(z, ·))

= − |δ̂∓(ξ)|2

ρ∓(ξ)|Ŵ (ξ)|2
|δ̂±(ξ)|2

δ̂±(ξ)2
ψ̂±(ξ, n)W±q,n−1(ψ̂±q (ξ, ·), ζ∓(z, ·)).(5.19)

By property II, (a) the function Ŵ (ξ) has no zeros in the interior of σ(1),u
∓ . Thus,

for z /∈ σ
(1)
∓ , the functions θ∓(z, ., n) are bounded in the interior of σ(1)

∓ and the
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only possible singularities can arise at the boundary. We claim

(5.20) θ∓(z, ξ, n) =

{
O(
√
ξ − E) for E /∈ σv,

O
(

1√
ξ−E

)
for E ∈ σv,

E ∈ ∂σ(1)
∓ , z 6= E.

This follows from |δ̂∓(ξ)|2
ρ∓(ξ) = O(

√
ξ − E) together with Ŵ (ξ) = O(1) if E /∈ σv and

1/Ŵ (ξ) = O(1/
√
ξ − E) by II, (b) if E ∈ σv. Therefore, θ∓ are integrable and the

third summand of (5.12) also inherits the properties of ζ∓(z, n).
Finally, the last summand in (5.12) again inherits the properties of ζ̃∓(z, n)

except for possible additional poles at the eigenvalues λk. However, these cancel
with the zeros of W̃ (z) at z = λk.

(ii). We consider the boundary values next. The only nontrivial term is of course
the Cauchy-type integral (5.18) as z → λ ∈ int(σ(1)

∓ ). First of all observe that by
(2.7) and (3.19),

W±q,n−1(ψ̃±q (λ), ψ̆±q (z))
T±(z)

→ (δ±W )(λ),

where the functions δ±W are bounded and nonzero for λ ∈ int(σ(1)
∓ ) by II, (a).

Hence the Plemelj formula applied to (5.18) gives

Θ∓(λ, n) = ± ψ̃±(λ, n)
2δ±(λ)ρ∓(λ)W (λ)

∓−
∫
σ

(1),u
∓

θ∓(λ, ξ, n)
ξ − λ

dξ, λ ∈ int(σ(1),u
∓ ),

where both terms are finite. Here −
∫

denotes the principle value integral. Therefore,
the boundary values away from ∂σ+ ∪ ∂σ− exist and we have

(5.21) h∓(λu, n) = h∓(λl, n), λ ∈ σ+ ∪ σ−.

By property I, (b),

(5.22) h∓ = T−1
±
(
R±ψ± + ψ±

)
=
ψ±

T±
+
ψ±
T±
∈ R, λ ∈ σ(1)

± ,

from which

(5.23) h∓(λu, n) = h∓(λl, n), λ ∈ σ(1)
± ,

follows. Combining (5.21) and (5.23) yields (5.14).
(iii). Since the last two terms in (5.12) are O(z−1), the asymptotic behavior

follows from (3.5) and II, (c).
(iv). From (5.13), (3.8), and (3.19) we obtain

W±(h∓(λ), ψ±(λ)) =
W±(ψ±(λ), ψ±(λ))

T±(λ)
=

1
T±(λ)ρ±(λ)

= ±W (λ), λ ∈ σ±.

Hence equality holds for all z ∈ C by analytic continuation. �

Corollary 5.6. The functions h̃∓(z, n) admit analytic extensions to C \ σ∓.

Proof. Property (i) of Lemma 5.4 holds for z ∈ C \ σ. Relation (5.14) implies that
h̃∓ have no jumps across z ∈ int(σ(1)

± ). To finish the proof we need to show that
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the possible remaining singularities at E ∈ ∂σ(1)
± ∩ ∂σ are removable. This follows

from (cf. (5.16))

(5.24) ζ̂∓(z, n) =
Ŵ (z)√∏2g±+1

j=0 (z − E±j )
δ̆±(z)ψ̆±q (z, n)

which shows ζ̃∓(z, n) = O((z − E)−1/2) and hence h̃∓(z, n) = O((z − E)−1/2) for
E ∈ σ(1)

± ∩ ∂σ.
However, let us emphasize at this point that the behavior of h±(z, n) at the

remaining edges is a more subtle question to be discussed later. �

Eliminating ψ± from{
R±(λ)ψ±(λ, n) + ψ±(λ, n) = h∓(λ, n)T±(λ)

R±(λ)ψ±(λ, n) + ψ±(λ, n) = h∓(λ, n)T±(λ)

yields

ψ±(λ, n)
(
1− |R±(λ)|2

)
= h∓(λ, n)T±(λ)−R±(λ)h∓(λ, n)T±(λ).

We apply I, (c), II, and the consistency condition I, (d) to obtain

T∓(λ)ψ±(λ, n) = h∓(λ, n)− R±(λ)T±(λ)
T±(λ)

h∓(λ, n)

= h∓(λ, n) +R∓(λ)h∓(λ, n), λ ∈ σ(2).(5.25)

This equation together with (5.13) gives us a system from which we can eliminate
the reflection coefficients R±. We obtain
(5.26)
T±(λ)

(
ψ±(λ)ψ∓(λ)− h±(λ)h∓(λ)

)
= ψ±(λ)h±(λ)− ψ±(λ)h±(λ), λ ∈ σ(2),u,l.

Now introduce the function

(5.27) G(z) := G(z, n) =
ψ+(z, n)ψ−(z, n)− h+(z, n)h−(z, n)

W (z)

which is well defined in the domain z ∈ C \ (σ ∪ σd ∪M+ ∪M−). By (5.26) and
(3.19),

(5.28) G(λ) =
(
ψ±(λ)h±(λ)− ψ±(λ)h±(λ)

)
ρ±(λ), λ ∈ σ(2),u,l,

so we need to study the properties of G(z, n) as a function of z. Our aim is to prove
that G(z, n) = 0, which will follow from the next lemma.

Lemma 5.7. The function G(z, n), defined by (5.27), has the following properties.
(i) G(λu, n) = G(λl, n) ∈ R for λ ∈ R \ (∂σ− ∪ ∂σ+ ∪ σd).
(ii) It has removable singularities at the points ∂σ− ∪ ∂σ+ ∪ σd, where σd :=
{λ1, ..., λp}.

Proof. (i). We can rewrite G(z, n) as

(5.29) G(z, n) =
ψ̃+(z, n)ψ̃−(z, n)− h̃+(z, n)h̃−(z, n)

W̃ (z)
,
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where h̃±(z, n) = δ±(z)h±(z, n) as usual. The numerator is bounded near the points
under consideration and the denominator does not vanish there. Thus G(z, n) has
no singularities at the points (M+ ∪M−) \ σd.

Furthermore, by Lemma 5.4, II, (a), and Lemma 3.1 we know that G(z, n) has
continuous limiting values on the sets σ− and σ+, except possibly at the edges, and
satisfies

G(λu, n) = G(λl, n), λ ∈ σ+ ∪ σ−.
Hence, if we can show that these limits are real, they will be equal and G(z, n) will
extend to a meromorphic function on C, that is, (i) holds. To this aim we first
observe that (5.14), (5.28), and Lemma 3.1 imply

(5.30) G(λu, n) = G(λl, n) ∈ R, λ ∈ int(σ(2)).

Thus, it remains to prove

(5.31) G(λu, n) = G(λl, n) ∈ R for λ ∈ int(σ(1)
− ) ∪ int(σ(1)

+ ).

Let us show that G(λ, n) has no jump on the set int(σ(1)
− )∪ int(σ(1)

+ ). We abbreviate

(5.32) [G] := G(λ)−G(λ) =
[
ψ+ψ−
W

]
−
[
h+h−
W

]
, λ ∈ σ(1),u

± ,

and drop some dependencies until the end of this lemma for notational simplicity.
Let λ ∈ int(σ(1),u

∓ ), then ψ±, h± ∈ R and T∓ = −(W ρ∓)−1. By (3.19), (I), (b),
and (5.13) we obtain for λ ∈ int(σ(1)

∓ )

(5.33)
[
ψ+ψ−
W

]
= ψ±

[
ψ∓
W

]
= ρ∓ψ±

(
ψ∓T∓ + ψ∓T∓

)
= ρ∓h±ψ±|T∓|2.

Since ρ± ∈ R for λ ∈ int(σ(1),u
∓ ), (3.19) implies[

h∓
W

]
= ρ± [h∓T±] .

The only non-real summand in (5.12) is the Cauchy-type integral. The Plemelj
formula applied to this integral gives

[h∓T±] = −ρ∓ψ±|T∓|2W (ψ±q , ψ̆
±
q ) = ρ∓ψ±|T∓|2

1
ρ±

,

and by (5.33) we get

(5.34)
[
h+h−
W

]
=
[
ψ+ψ−
W

]
= ρ∓ψ±h±|T∓|2, λ ∈ int(σ(1)

∓ ).

Since W̃ 6= 0 for λ ∈ int(σ(1)
∓ ), the function

ρ∓ψ±h±|T∓|2 = −
δ2
∓
ρ∓

ψ̃±h̃±

|W̃ |2

is bounded on the set under consideration. Finally, (5.34) and (5.32) imply (5.31).
(ii). Now we prove that the function G(z, n) has removable singularities at the

points ∂σ− ∪ ∂σ+ ∪ σd. We divide this set into four subsets

(5.35) Ω±1 = ∂σ(2) ∩ int(σ∓), Ω2 = ∂σ(2) ∩ ∂σ, Ω±3 = ∂σ
(1)
± ∩ ∂σ±, Ω4 = σd.

Since all singularities of G are at most isolated poles, it is sufficient to show that

(5.36) G(z) = o
(
(z − E)−1

)
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from some direction in the complex plane.
Ω1: Consider E ∈ Ω+

1 (the case E ∈ Ω−1 being completely analogous). We will
study limλ→E G(λ, n) as λ ∈ int(σ(2)) using (5.28) with the “−” sign. Note that
ψ− = O(1), ρ− = O(1), and Ŵ (E) 6= 0. Moreover, we obtain from Lemma 3.1
respectively II that

ψ+(λ) =

{
O(1), E /∈ M̂+,

O
(

1√
λ−E

)
, E ∈ M̂+,

1
T+(λ)

=

{
O
(

1√
λ−E

)
, E /∈ M̂+,

O(1), E ∈ M̂+,

which shows

h−(λ) =
ψ+(λ) +R+(λ)ψ+(λ)

T+(λ)
= O

(
1√
λ− E

)
for λ ∈ σ(2). Inserting this into (5.28) shows G(λ, n) = O

(
1√
λ−E

)
and finishes the

case E ∈ Ω1.
Ω2: For E ∈ ∂σ(2) ∩∂σ, we use (5.28) and take the limit λ→ E from σ(2). First

of all, observe that

δ̆−
(
R−ψ− + ψ−

)
=
{
O(1) E ∈ σv,
o(1) E /∈ σv.

The case E ∈ σv is evident. If E /∈ σv then (3.11) and (3.25) yield

δ̆−
(
R−ψ− + ψ−

)
=
{

δ̆−
(
(ψ− − ψ−) + (R− + 1)ψ−

)
, E /∈ M̂−(

δ̆−(ψ− + ψ−) + (R− − 1)δ̆−ψ−
)
, E ∈ M̂−

= o(1).

Therefore, both for virtual and non-virtual levels the estimate

(5.37) δ̆−
(
R−ψ− + ψ−

)
Ŵ = o(1), E ∈ ∂σ−,

is valid. Inserting (5.13) into the summand ψ+h+ρ+ of (5.28) (for the second
summand we use an analogous approach) we obtain (recall (2.2))

ψ+h+ρ+ = ψ+ρ+ρ−(ψ− +R−ψ−)W =
ψ+δ̆+

P+P−
δ̂+δ̂−δ̆−(ψ− +R−ψ−)W

=
ψ+δ̆+

P+P−
δ̆−
(
R−ψ− + ψ−

)
Ŵ .(5.38)

Combining the estimate
ψ+δ̆+

P+P−
= O

(
1

λ− E

)
with (5.37) we have G(z) = o

(
(z − E)−1

)
as desired.

Ω3: Suppose that E ∈ ∂σ(1)
− ∩∂σ− (the case E ∈ ∂σ(1)

+ ∩∂σ+ is again analogous).
Now we cannot use (5.28), so we proceed directly from formula (5.27) estimating
the summands ψ+ψ−

W and h+h−
W separately. We investigate the limit as λ→ E from

the set int(σ(1)
− ). By Lemma 3.1 and (3.22) we have

(5.39)
ψ+ψ−
W

=
ψ̂+ψ̂−

Ŵ
= O

(
1√
λ− E

)
,

hence the first summand has the desired behavior. To estimate the second sum-
mand, we split the function h−(λ, n) according to

h−(λ, n) = h1(λ, n) + h2(λ, n),
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where

h1(λ, n) = W+
q,n−1(ζ−(λ, ·), d−(λ, n, ·)), h2(λ, n) = h−(λ, n)− h1(λ, n),

(5.40) d−(λ, n, .) :=
∫
σ

(1),u
−

|T−(ξ)|2ψ+(ξ, n)ψ+
q (ξ, ·)

ξ − λ
dω−(ξ).

It follows from the proof of Lemma 5.4 that h2(λ) = O(ζ−(λ)) for λ → E. Recall
that at the point under consideration singularities E ∈ {µ+

1 , . . . , µ
+
g+} ∪ M̂− might

occur (in the case ∂σ(1)
− ∩∂σ one can have E ∈M+∪M̆+ and in the case ∂σ(1)

− ∩∂σ
(1)
+

one can have E ∈ M̂+). Introduce

(5.41) φ+
q (z, n) := δ̆+(z)ψ̆+

q (z, n)

and recall that (2.15) implies

(5.42) φ+
q (z, n)− φ+

q (E,n) = O(
√
z − E).

Then (see (2.2) and (2.13)) we have

(5.43)
h+ζ−
W

= O

(
h+ψ̆

+
q

WT+

)
= O

(
h+δ̂+δ̆+ψ̆

+
q

P+

)
= O

(
h+δ̂+
P+

)
φ+
q .

Now we distinguish two cases: (a) E ∈ ∂σ(1)
− ∩ ∂σ

(1)
+ and (b) E ∈ ∂σ(1)

− ∩ ∂σ.
Case (a). By (5.13) and (5.37) we have

(5.44) δ̂+h+ =
(R−ψ− + ψ−)δ̂+

T−
=
Ŵ δ̆−(R−ψ− + ψ−)

P−
= o

(
1√
λ− E

)
,

therefore

(5.45)
h+(λ)ζ−(λ)

W (λ)
= o

(
1√
λ− E

)
φ+
q (λ)
P+(λ)

.

As a consequence of φ+
q

P+
= O

(
1√
λ−E

)
we obtain

(5.46)
h+h2

W
= o

(
1

λ− E

)
, E ∈ ∂σ−.

Next, we have to estimate

(5.47)
h+h1

W
= W+

q,n−1

(h+ζ−
W

,d−

)
.

By (5.42) we can represent (5.45) as

(5.48)
h+(λ)ζ−(λ)

W (λ)
= o

(
1√
λ− E

)(
ψ̄+
q (E)
√
λ− E

+O(1)
)
.

Then (5.47) implies

h+(λ, n)h1(λ, n)
W (λ)

= o

(
1√
λ− E

)(
O(d−(λ, n)) +O(d−(λ, n− 1))

+
O
(
W+
q,n−1

(
φ+
q (E), d−(λ)

))
√
λ− E

)
.

(5.49)

To estimate d− in the first two summands we distinguish between the resonance
case, E ∈ σv, and non-resonance, E /∈ σv. First let E /∈ σv, that is, Ŵ (E) 6= 0.
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From (5.19) and (5.20) we see that the integrand is bounded as λ→ E /∈ σv, then
d−(λ) = O(1) by [17].

If E ∈ σv, then (3.22) (see also (5.19)) yields

|T−(ξ)|2ρ−(ξ)ψ+(ξ, ·)ψ+
q (ξ, ·) = O

(
1√
ξ − E

)
and [17, Eq. (29.8)] implies

(5.50) d−(λ) = o

(
1√
λ− E

)
.

For the estimate of the last summand in (5.49) we use (5.19) and (5.40) to represent
the integrand in W+

q,n−1

(
ψ̆+
q (E), d−(λ)

)
as

|T−(ξ)|2ρ−(ξ)ψ+(ξ, n)W+
q,n−1

(
ψ+
q (ξ), φ+

q (E)
)

= O

(√
ξ − E
|Ŵ (ξ)|2

W+
q,n−1

(
ψ̂+
q (ξ), φ+

q (E)
))
.

It follows from (2.15) and (5.41) that

W+
q,n−1(ψ̂+

q (ξ), φ+
q (E)) = O

(√
ξ − E

)
,

which implies together with (3.22) the boundedness of the integrand near E. Thus,

(5.51) W+
q,n−1

(
φ+
q (E), d−(λ)

)
= O(1),

and combining (5.46), (5.49), (5.51), and (5.50) finishes case (a).
Case (b). Now we do not have estimate (5.37) (cf. III, (b)) at our disposal, but

we can proceed as in (5.43), (5.44) since P+(E) 6= 0 and arrive at

(5.52)
h+ζ−
W

= O(h+δ̂+) = O

(
Ŵ δ̆−(R−ψ− + ψ−)

P−

)
= O

(
Ŵ√
λ− E

)
.

This estimate is sufficient to conclude that (5.46) is valid in case (b) as well. For
h1, we use the following estimate (cf. (5.50) and (5.52)) instead of (5.47):

h+h1

W
= O

(
h+ζ−
W

)
O (d−) = O

(
Ŵ√
λ− E

)
o

(
1√
λ− E

)
.

Combining this with (5.46) finishes case (b).
Ω4: Finally we have to show that the singularities of G(z, n) at the points of the

discrete spectrum are removable. Since W̃ (z) has simple zeros at z = λk, it suffices
by (5.29) to show that

(5.53) h̃+(λk, n)h̃−(λk, n) = ψ̃−(λk, n)ψ̃+(λk, n).

By Lemma 5.4, the functions h̃∓ = δ∓h∓ given in (5.12) are continuous at the points
M̆±. Since (δ∓T−1

± )(λk) = 0 and (δ∓T−1
± ψ̆±q )(λk) = 0, only the last summand in

(5.12) is non-zero. We compute the limit of this summand as λ→ λk using (3.19),

(5.54) h̃∓(λk) = −γ±,kψ̃±(λk)
dW̃ (λk)
dλ

,

and apply (3.20) to obtain (5.53). �
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The identity G(z, n) ≡ 0 implies

(5.55) ψ+(z, n)ψ−(z, n)− h+(z, n)h−(z, n) ≡ 0, ∀n ∈ Z.

For z →∞ we obtain by (2.16) and (5.9)

ψ+(z, n)ψ−(z, n) = K+(n, n)K−(n, n)
n−1∏
∗

j=0

a+
q (j)

a−q (j)
(1 + o(1)).

Formulas (5.15) and (3.24) imply

h+(z, n)h−(z, n) =
1

T+(∞)2K+(n, n)K−(n, n)

n−1∏
∗

j=0

a−q (j)

a+
q (j)

(1 + o(1))

and by (5.55),

K+(n, n)K−(n, n)
n−1∏
∗

j=0

a+
q (j)

a−q (j)
=

1
T+(∞)

.

The value on the left hand side does not depend on n, so using (5.7) we conclude

(5.56) a+(n) = a−(n) ≡ a(n), ∀n ∈ Z.

It remains to prove b+(n) = b−(n). If we eliminate the reflection coefficient R±
from (5.13) at n and (5.25) at n+ 1 we obtain

G1(λ, n) :=
ψ+(λ, n)ψ−(λ, n+ 1)− h+(λ, n+ 1)h−(λ, n)

W (λ)

= ρ+(λ)
(
h±(λ, n+ 1)ψ±(λ, n)− ψ±(λ, n)h±(λ, n+ 1)

)
, λ ∈ σ(2),u,l.

(5.57)

Proceeding as for G(λ, n) in Lemma 5.7 we can show that that the function G1(z, n)
is holomorphic in C. From (5.15), (5.9), (3.24), (2.16), (5.56), and the Liouville
theorem we conclude that

ψ+(z, n)ψ−(z, n+ 1)− h+(z, n+ 1)h−(z, n)
W (z)

= −1/a(n).

We compute the asymptotics of

W̄ (z, n) := a(n) (ψ+(z, n)ψ−(z, n+ 1)− h+(z, n+ 1)h−(z, n)) = −W (z)

as z →∞ and obtain (compare (3.5))

(5.58) 0 = W̄ (z, n)− W̄ (z, n− 1) = (b+(n)− b−(n))K+(0, 0)K−(0, 0).

This implies in particular b+(n) = b−(n) ≡ b(n), hence the proof of Theorem 5.3 is
finished.
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