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Abstract. We solve the Cauchy problem for the Korteweg–de Vries equation
with steplike quasi-periodic, finite-gap initial conditions under the assumption

that the perturbations have a given number of derivatives with finite moments.

1. Introduction

The purpose of this paper paper is to investigate the Cauchy problem for the
Korteweg–de Vries (KdV) equation

(1.1) qt(x, t) = −qxxx(x, t) + 6q(x, t)qx(x, t), q(x, 0) = q(x),

(where subscripts denote partial derivatives as usual) for the case of real-valued
steplike initial conditions q(x). More precisely, we will assume that q(x) is asymp-
totically close to (in general) different quasi-periodic, finite-gap potentials p±(x) in
the sense that

(1.2) ±
∫ ±∞

0

∣∣∣∣ dndxn (q(x)− p±(x)
)∣∣∣∣ (1 + |x|m0)dx <∞, 0 ≤ n ≤ n0,

for some positive integers m0, n0. Here by quasi-periodic, finite-gap potentials we
mean algebro-geometric, quasi-periodic, finite-gap potentials which arise naturally
as the stationary solutions of the KdV hierarchy as discussed in [30] (further details
will be given in Section 2). If (1.2) holds for all m0, n0 we call q a Schwartz-type
perturbation.

Ever since the seminal work of Gardner et al. [28] in 1967 the inverse scattering
transform has become one of the main tools used for solving this Cauchy problem.
Numerous articles have been devoted to this subject since the publication of the
GGKM paper. In particular, the case that the initial condition is asymptotically
close to p±(x) = 0 is well understood. We refer to the monographs by Eckhaus
and Van Harten [17], Marchenko [48], Novikov, Manakov, Pitaevskii, and Zakharov
[50], or Faddeev and Takhtajan [23].

There are two natural cases which have been considered in the past when extend-
ing this classical situation. The first case is that of equal quasi-periodic, finite-gap
potentials p−(x) = p+(x) and the second is the case of steplike constant asymp-
totics p±(x) = c± (with c− 6= c+). The aim of our present paper is to combine
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2 I. EGOROVA AND G. TESCHL

both cases and to solve some open problems in these special cases (to be discussed
in detail below) along the way.

The underlying scattering theory in the case of asymptotically periodic solutions
was first investigated by Firsova [24]–[26]. The first ones to consider the Cauchy
problem with a periodic background seem to be Kuznetsov and Mikhăılov [47], who
informally treated the Korteweg–de Vries equation with the Weierstraß elliptic func-
tion as background solution. It turns out, due to the poles of the Baker–Akhiezer
functions, which reflect the fact that the underlying hyperelliptic Riemann surface is
no longer simply connected, that the periodic case is much more complicated. The
only known results concerning the existence of the solution seem to be by Ermakova
[21], [22] and Firsova [27] (where the evolution of the scattering data for periodic
background was given). However, both works are incomplete from the point of view
of a rigorous application of the inverse scattering method. Surprisingly, much more
is know about the asymptotical behavior (assuming existence) of such solutions; see
for example [2], [4]–[6], [34], [41]–[45], [51]. A complete and rigorous treatment of
the inverse scattering transform for the KdV equation in the case of initial condi-
tions which are Schwartz-type perturbations of finite-gap solutions was given only
recently by Grunert and the present authors [19].

Let us now turn to the case of steplike constant potentials, p±(x) = c±. The
foundations for scattering theory are completely understood and were given in
Buslaev and Fomin [11], Davies and Simon [15], Cohen and Kappeler [13], Gesztesy
[29], and Aktosun [1].

The corresponding Cauchy problem for the KdV equation was first investigated
by Khruslov [41], who derives the time evolution of the scattering data and analyzes
the long-time asymptotics. Later, Cohen [12] solved the case that q(x) is the
Heaviside step function. Kappeler [38], based on some advances in scattering theory
of Cohen and Kappeler [14], showed how to handle general initial conditions with
only a fixed number of moments finite. The time evolution of the scattering data for
the entire KdV hierarchy was computed recently by Khasanov and Urazboev [40].
However, while Kappeler’s result is impressive from a technical point of view, it still
does not give a satisfactory answer, since it only determines the decay properties of
the solution near one side, whereas only very mild information is given concerning
the decay properties at the other side. In particular, even if one starts with a
Schwartz-type initial condition, the results in [38] do not guarantee that the solution
stays within this class. The reason for this is that [38] (as well as [12]) does not use
the full inverse scattering machinery but only a half-sided approach. For further
results, where the initial condition is supported on a half-line, see Rybkin [52] and
the references therein. The case of power-like asymptotic behavior (including some
unbounded initial conditions) was investigated by Bondareva and Shubin [7], [8];see
also [39] for the case of the mKdV equation. Finally, we mention that in the discrete
steplike finite-gap case (Toda lattice), the same problem was completely solved in
[20]. For analysis of the corresponding long-time asymptotic behavior, see [9], [16],
[35], [36], [37], [46] and [53].

To state our main result we denote the spectra of the one-dimensional finite-gap
Schrödinger operators L± = −∂2

x + p± associated with the potentials p±(x) by

(1.3) σ± = [E±0 , E
±
1 ] ∪ · · · ∪ [E±2j−2, E

±
2j−1] ∪ · · · ∪ [E±2r± ,∞).

The various possible locations of the two spectra are illustrated in the following
example.
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Example. Let L+ be the two-band operator with spectrum σ+ = [E1, E2] ∪
[E4,+∞) and L− the three band operator with spectrum σ− = [E1, E2]∪ [E3, E4]∪
[E5,+∞), where E1 < E2 < · · · < E5.

σ−

σ+

E1 E2 E3 E4 E5

Figure 1. Typical locations of σ− and σ+.

To shed some additional light on this we recall that the Marchenko kernel
F±(x, y, t) (cf. (3.1)) consists of three summands F±(x, y, t) = F±,D(x, y, t) +
F±,H(x, y, t)+F±,R(x, y, t), the first summand being a sum over all eigenvalues, the
second one an integral over σ∓\σ±, and the last one an integral over σ±. The cru-
cial part is to show decay properties of F±(x, y, t) (and its partial derivatives). The
first term F±,D(x, y, t) is as nice as one can wish for and can thus be ignored. To
get the necessary decay for the remaining two terms one needs to use integration by
parts. In the classical case (and more general at points E1 and E2 in our example),
the corresponding boundary terms arising during integration by parts will vanish
and the required decay follows. However in a steplike situation (at points E4 and
also E5 for the − case), this is no longer true. Moreover, at a point like E5 the
integrand of F+,R has a non-differentiable singularity which prevents an immediate
integration by parts. By just working with the other kernel one can evade this
obstacle at the price of loosing the information about decay of the solution at this
side. Clearly these problems evaporate if points like E4 and E5 in our example are
absent. This was the case analyzed in [19]. (In [19] are also found some necessary
technical ingredients, which we use freely here). Note that while this restriction
(which says that the respective spectral bands either coincide or are disjoint) ex-
cludes the steplike constant case, it includes the case of short-range perturbations
of arbitrary quasi-periodic, finite-gap solutions.

It is the aim of the present paper to overcome these problems. To this end,
rather than looking at the terms F±,H(x, y, t) and F±,R(x, y, t) individually, we will
in fact show that the boundary terms mutually cancel. While this sounds like a
pretty straightforward strategy, this cancellation is by no means obvious and is
nothing short of a small miracle. Interestingly enough, points like E4 and E5 (the
first one being absent in the steplike constant case) turn out to require somewhat
different miracles, the first point being more involved.

Our result settles the aforementioned open problem of steplike constant Schwartz-
type perturbations as a special case. Moreover, based on the recent advances in
inverse scattering theory with steplike quasi-periodic, finite-gap backgrounds in [10]
(cf. also [31]) and our preparations in [19], we are able to handle not only steplike
constant but also arbitrary steplike quasi-periodic, finite-gap backgrounds. For
more on the history of this problem and additional literature, see [19].

Next, let us state our main result. Denote by Cn(R) the set of functions x ∈
R 7→ q(x) ∈ R which have n continuous derivatives with respect to x 1 and by
Cnk (R2) the set of functions (x, t) ∈ R2 7→ q(x, t) ∈ R which have n continuous
derivatives with respect to x and k continuous derivatives with respect to t.

1here C0(R) = C(R)
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Theorem 1.1. Let p±(x, t) be two real-valued, quasi-periodic, finite-gap solutions
of the KdV equation corresponding to arbitrary quasi-periodic, finite-gap initial data
p±(x) = p±(x, 0). Let m0 ≥ 8 and n0 ≥ m0 + 5 be fixed natural numbers. Suppose
that q(x) ∈ Cn0(R) is a real-valued function such that (1.2) holds. Then there exists
a unique classical solution q(x, t) ∈ Cn0−m0−2

1 (R2) of the initial-value problem for
the KdV equation (1.1) satisfying

(1.4) ±
∫ ±∞

0

∣∣∣∣ ∂n∂xn (q(x, t)− p±(x, t)
)∣∣∣∣ (1+ |x|b

m0
2 c−2)dx <∞, n ≤ n0−m0−2,

and

(1.5) ±
∫ ±∞

0

∣∣∣∣ ∂∂t(q(x, t)− p±(x, t)
)∣∣∣∣ (1 + |x|b

m0
2 c−2)dx <∞,

for all t ∈ R.

In particular, this theorem shows that the KdV equation has a solution in the
class of steplike Schwartz-type perturbations of finite-gap potentials:

Corollary 1.2. Let p±(x, t) be two real-valued, quasi-periodic, finite-gap solutions
of the KdV equation corresponding to arbitrary quasi-periodic, finite-gap initial data
p±(x) = p±(x, 0). In addition, suppose, that q(x) is a steplike Schwartz-type pertur-
bation of p±(x). Then the solution q(x, t) of the initial-value problem for the KdV
equation (1.1) is a steplike Schwartz-type perturbation of p±(x, t) for all t ∈ R.

The above results can also be used to solve analogous Cauchy problems for the
modified KdV equation [18]. Furthermore, it might also be of independent interest
that for uniqueness the following weaker requirement is sufficient.

Theorem 1.3. Let p±(x, t) be two real-valued, quasi-periodic, finite-gap solutions
of the KdV equation corresponding to arbitrary quasi-periodic, finite-gap initial data
p±(x) = p±(x, 0). Suppose q(x, t) is a solution of the KdV Cauchy problem satis-
fying

(1.6) ±
∫ ±∞

0

(
|q(x, t)− p±(x, t)|+

∣∣∣∣ ∂∂t(q(x, t)− p±(x, t)
)∣∣∣∣) (1 + x2)dx <∞,

then q(x, t) is unique in this class of solutions.

Proof. The assumption are sufficient to prove the time evolution of the scattering
data [19, Lemma 5.3]. Moreover, by [10, Corollary 4.4] the scattering data uniquely
determine q(x, t) and the claim follows. �

2. The inverse scattering transform for the KdV equation with
steplike finite-gap initial data

In [19], we established the inverse scattering transform for the KdV equation in
the case of Schwartz-type perturbations. In this section, we review the necessary
steps and identify the changes required for the present, more general, situation.
These changes are implemented in the next section. For further information and
for the history of finite-gap solutions see, for example, [30], [32], [48], or [50]. For
further information on the underlying scattering theory and its history see [10].

To set the stage let

(2.1) L±(t) = − d2

dx2
+ p±(x, t)
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be two one-dimensional Schrödinger operators, corresponding to two real-valued,
quasi-periodic, finite-gap solutions p±(x, t) of the KdV equation that are associated
with the spectra

(2.2) σ± = [E±0 , E
±
1 ] ∪ · · · ∪ [E±2j−2, E

±
2j−1] ∪ · · · ∪ [E±2r± ,∞)

and the Dirichlet divisors

(2.3)
{(
µ±1 (t), σ±1 (t)

)
, . . . ,

(
µ±r±(t), σ±r±(t)

)}
,

respectively. Here we assume without loss of generality that all gaps are open, that
is, E±2j−1 < E±2j for j = 1, 2, ..., r±. We will abbreviate µ±j (0) = µ±j , σ±j (0) = σ±j .

Let us cut the complex plane along the spectrum σ± and denote the upper and
lower sides of the cuts by σu

± and σl
±. Denote the corresponding points of the cuts

by λu and λl, respectively. In particular, this means

(2.4) f(λu) := lim
ε↓0

f(λ+ iε), f(λl) := lim
ε↓0

f(λ− iε), λ ∈ σ±.

Set

(2.5) Y±(λ) = −
2r±∏
j=0

(λ− E±j ),

and introduce the functions

(2.6) g±(λ, t) = −
∏r±
j=1(λ− µ±j (t))

2Y
1/2
± (λ)

,

where the branch of the square root is chosen such that

(2.7)
1

i
g±(λu, t) = Im(g±(λu, t)) > 0 for λ ∈ σ±, t ∈ R+.

Denote by

(2.8) ψ±(λ, x, t) = c±(λ, x, t) +m±(λ, t)s±(λ, x, t)

the Weyl solutions of the equations

(2.9) L±(t)y = λy,

normalized according to ψ±(λ, 0, t) = 1 and such that ψ±(λ, ·, t) ∈ L2(R±) for
λ ∈ C \ σ±. Here, m±(t) are the Weyl functions and c±(λ, x, t) and s±(λ, x, t) are
solutions of (2.9), that satisfy the initial conditions

(2.10) c±(λ, 0, t) = s′±(λ, 0, t) = 1, s±(λ, 0, t) = c′±(λ, 0, t) = 0.

The functions ψ± admit the well-known representation

(2.11) ψ±(λ, x, t) = u±(λ, x, t)e±iθ±(λ)x, λ ∈ C \ σ±,
where θ±(λ) are the quasimomenta and the functions u±(λ, x, t) are quasiperiodic
with respect to x with the same basic frequencies as the potentials p±(x, t). The
quasimomenta are holomorphic for λ ∈ C \ σ± and normalized according to

(2.12)
dθ±
dλ

> 0 for λ ∈ σu
±, θ±(E±0 ) = 0.

This normalization implies

(2.13)
dθ±
dλ

=
i
∏r±
j=1(λ− ζ±j )

Y
1/2
± (λ)

, ζ±j ∈ (E±2j−1, E
±
2j),
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and therefore, the quasimomenta are real-valued on σu,l
± . Note, that in the case

where p±(x, t) ≡ 0 we have θ±(λ) =
√
λ, u±(λ, x, t) ≡ 1 and m±(λ, t) = ±i

√
λ. In

the general finite-gap cases the two Weyl m-functions associated with L± are given
by ([30, eq. (1.165)])

(2.14) m±(λ, t) =
H±(λ, t)± Y 1/2

± (λ)∏r±
j=1(λ− µ±j (t))

, m̆±(λ, t) =
H±(λ, t)∓ Y 1/2

± (λ)∏r±
j=1(λ− µ±j (t))

.

Here H±(λ, t) are polynomials in λ of deg(H±) ≤ r±−1 with real-valued coefficients
which are smooth with respect to t. Moreover,

(2.15) H±(µ±j (t), t) = 0 for µ±j (t) ∈ ∂σ±.

Associated with the second Weyl m-function m̆±(λ, t) is the second Weyl solution

ψ̆±(λ, x, t) = c±(λ, x, t) + m̆±(λ, t)s±(λ, x, t)

= ŭ±(λ, x, t)e∓iθ±(λ)x, λ ∈ C \ σ±,(2.16)

that satisfies ψ̆±(λ, ·, t) ∈ L2(R∓) for λ ∈ C \ σ±. The Wronski determinant,

W(f, g)(x) = f(x)g′(x)− f ′(x)g(x), of the functions ψ± and ψ̆± is given by

(2.17) W(ψ±(λ, ., t), ψ̆±(λ, ., t)) = ±g±(λ, t)−1.

Introduce the Lax operators corresponding to the finite-gap solutions p±(x, t),

L±(t) = −∂2
x + p±(x, t),(2.18)

P±(t) = −4∂3
x + 6p±(x, t)∂x + 3∂xp±(x, t).(2.19)

Then the following result is valid ([3], [30])

Lemma 2.1. The functions

(2.20) ψ̂±(λ, x, t) = eα±(λ,t)ψ±(λ, x, t),

where

(2.21) α±(λ, t) :=

∫ t

0

(
2(p±(0, s) + 2λ)m±(λ, s)− ∂p±(0, s)

∂x

)
ds,

satisfy the system of equations

L±(t)ψ̂± = λψ̂±,(2.22)

∂ψ̂±
∂t

= P±(t)ψ̂±.(2.23)

Set

M±(t) = {µ±j (t) | µ±j (t) ∈ (E±2j−1, E
±
2j) and m±(λ, t) has a simple pole},(2.24)

M̂±(t) = {µ±j (t) | µ±j (t) ∈ {E±2j−1, E
±
2j}},

and introduce the functions

δ±(λ, t) :=
∏

µ±j (t)∈M±(t)

(λ− µ±j (t)),

δ̂±(λ, t) :=
∏

µ±j (t)∈M±(t)

(λ− µ±j (t))
∏

µ±j (t)∈M̂±(t)

√
λ− µ±j (t),(2.25)
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where
∏

= 1 if the index set is empty. These functions allow us to remove the
singularities of the Weyl solutions ψ±(λ, x, t) whenever necessary.

Next, we collect now some facts from scattering theory for Schrödinger operators
with smooth steplike finite-gap potentials (cf. [10], [19]). To shorten notations
throughout this discussion, we omit the dependence on t.

Let n1 ≥ 0 and m1 ≥ 2 be given natural numbers and let q(x) ∈ Cn1(R) be a
real-valued function such that

(2.26) ±
∫ ±∞

0

∣∣∣∣ dndxn (q(x)− p±(x)
)∣∣∣∣ (1 + |x|m1)dx <∞, ∀ 0 ≤ n ≤ n1.

Consider the perturbed operator

(2.27) L := − d2

dx2
+ q(x)

with a potential q(x) that satisfies (2.26). The spectrum of L consists of a purely
absolutely continuous part σ := σ+∪σ−, plus a finite number of discrete eigenvalues
σd = {λ1, . . . , λp} situated in the gaps σd ⊂ R \ σ. The set σ(2) := σ+ ∩ σ− is

the spectrum of multiplicity two for the operator L, and the set σ
(1)
+ ∪ σ(1)

− with

σ
(1)
± = clos(σ± \ σ∓) is the spectrum of multiplicity one.

The Jost solutions of the spectral equation

(2.28)

(
− d2

dx2
+ q(x)

)
φ(x) = λφ(x), λ ∈ C,

are defined by the requirement that they asymptotically look like the Weyl solutions
of the background operators as x→ ±∞.

Lemma 2.2. Assume q(x) satisfies (2.26). Then there exist solutions φ±(λ, x),
λ ∈ C, of (2.28) satisfying

(2.29) φ±(λ, x) = ψ±(λ, x)(1 + o(1)), x→ ±∞.

The Jost solutions φ±(λ, .) are meromorphic with respect to λ ∈ C\σ± and have

the same poles as ψ±(λ, .). The functions δ̂(λ)φ±(λ, ·) are continuous up to the

boundary σu
± ∪ σl

±. Moreover, δ̂(λ)φ±(λ, ·) are m1 times differentiable with respect

to λ ∈ int(σu
±∪σl

±) and m1−1 times continuously differentiable with respect to the

local variable
√
λ− E near E ∈ ∂σ±.

Proof. Set

(2.30) J±(λ, x, y) =
ψ±(λ, y)ψ̆±(λ, x)− ψ±(λ, x)ψ̆±(λ, y)

W(ψ±(λ), ψ̆±(λ))
.

Then the Jost solutions of (2.28) formally satisfy the integral equation

(2.31) φ±(λ, x) = ψ±(λ, x)−
∫ ±∞
x

J±(λ, x, y)(q(y)− p±(y))φ±(λ, y)dy.

To remove the singularities of ψ±(λ, x) near λ ∈ M± ∪ M̂±, one can multiply the

whole equation by δ̂±(λ).
Similarly, the x derivatives satisfy

∂

∂x
φ±(λ, x) =

∂

∂x
ψ±(λ, x)−

∫ ±∞
x

(
∂

∂x
J±(λ, x, y)

)
(q(y)− p±(y))φ±(λ, y)dy.



8 I. EGOROVA AND G. TESCHL

Hence, existence of the Jost solutions together with their derivatives follows from
existence of solutions of these integral equations. Existence is proved by the method
of successive iterations in the usual manner. Observe that since at points λ ∈ ∂σ±
the second solution grows linearly, the above kernel can only be estimated by C|x−y|
near such points. �

We also need to know the asymptotic behavior of the Jost solutions as λ→∞.
To determine it, we recall the well-know expansion (cf. the proof of Lemma 1.19 in
[30])

(2.32) ψ±(λ, x) = exp

±i
√
λx+

∫ x

0

 n∑
j=1

κ±j (y)

(±2i
√
λ)j

+
κ̃n,±(

√
λ, y)

(±2i
√
λ)n

 dy

 ,

up to any order n, where

(2.33) κ±1 (x) = p±(x), κ±j+1(x) = − ∂

∂x
κ±j (x)−

j−1∑
i=1

κ±j−i(x)κ±i (x),

and the error term satisfies

(2.34)
∂l

∂kl
κ̃n,±(k, x) = o(1), l = 0, 1, . . .

for fixed x as k →∞.

Lemma 2.3. Assume q(x) satisfies (2.26). Then the Jost solutions have the as-
ymptotic expansions

(2.35) φ±(λ, x) = ψ±(λ, x)

(
1 +

φ±,1(x)

λ1/2
+ · · ·+ φ±,n1+1(x)

λ(n1+1)/2
+ o
(
λ−(n1+1)/2

))
which can be differentiated m1 times with respect to λ1/2. An analogous expansion
holds for ∂

∂xφ±(λ, x).

Proof. To obtain the asymptotic expansion, consider φ̃±(λ, x) = φ±(λ,x)
ψ±(λ,x) , which

satisfy

(2.36) φ̃±(λ, x) = 1−
∫ ±∞
x

J̃±(λ, x, y)(q(y)− p±(y))φ̃±(λ, y)dy,

where J̃±(λ, x, y) = J±(λ, x, y)ψ±(λ,y)
ψ±(λ,x) . Next recall (2.11), (2.16), and (2.17) which

imply

J̃±(λ, x, y) = ±g±(λ)

(
u±(λ, y)2 ŭ±(λ, x)

u±(λ, x)
e±2iθ±(λ)(x−y) − ŭ±(λ, y)u±(λ, y)

)
,

where u±(λ, x), ŭ±(λ, x) are quasi-periodic with respect to x and have convergent
expansions around ∞ with respect to θ±(λ)−1. Now use the fact that∫ ∞

0

e2iθ(λ)yf(λ, y)dy =

n∑
j=1

fj
θ(λ)j

+ o(θ(λ)−n)

provided f(λ, x) is n times differentiable with respect to x, the first n−1 derivatives
have an asymptotic expansion with respect to θ(λ)−1 of order n and the n’th

derivative satisfies limλ→∞
∂n

∂xn f(λ, x) = g(x) in L1(0,∞). This follows from n
partial integrations and the Riemann-Lebesgue Lemma (cf. also [49, Theorem 3.2]).
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As in the previous lemma, the claims for the derivatives follow by considering
the corresponding integral equations. �

Corollary 2.4. Assume q(x) satisfies (2.26). Then the Weyl m-functions mq,±(λ, x) =
φ′±(λ,x)

φ±(λ,x) have the asymptotic expansion

(2.37) mq,±(λ, x) = ±i
√
λ+

n1∑
j=1

κj(x)

(±2i
√
λ)j

+ o(λ−n1/2),

which can be differentiated m1 times with respect to λ1/2. The coefficients κj(x)
are given by (2.33) with q(x) in place of p±(x).

Proof. Existence of the expansion follows from the previous lemma, and the expan-
sion coefficients follow by comparing coefficients in the Riccati equation

∂

∂x
mq,±(λ, x) +mq,±(λ, x)2 + λ− q(x) = 0.

�

The Jost solutions can be represented, with the help of the transformation op-
erators, as

(2.38) φ±(λ, x) = ψ±(λ, x)±
∫ ±∞
x

K±(x, y)ψ±(λ, y)dy,

where K±(x, y) are real-valued functions that satisfy

(2.39) K±(x, x) = ±1

2

∫ ±∞
x

(q(y)− p±(y))dy.

Moreover, as a consequence of [10, (A.15)], we have the estimate
(2.40)∣∣∣∣ ∂n+l

∂xn∂yl
K±(x, y)

∣∣∣∣ ≤ C±(x)

Q±(x+ y) +

n+l−1∑
j=0

∣∣∣∣ ∂j∂xj (q(x+ y

2
)− p±(

x+ y

2
)
)∣∣∣∣
 ,

for ±y > ±x, where C±(x) = Cn,l,±(x) are continuous positive functions decaying
as x→ ±∞, and

(2.41) Q±(x) := ±
∫ ±∞

x
2

∣∣q(y)− p±(y)
∣∣dy.

Formula (2.38) shows that the Jost solutions inherit all singularities of the back-
ground Weyl functions m±(λ) and Weyl solutions ψ±(λ). In particular, as a direct
consequence of formulas (2.8), (2.13), (2.14), (2.15), (2.38), and Lemma 2.2 we have
the following result.

Lemma 2.5. Let E ∈ ∂σ± and let ε > 0 be such that [E − ε, E + ε] ∩ ∂σ± = {E}
and ε < dist(µ±j , E) if µ±j 6= E.

(i) Let µ±j = E. Introduce the functions

(2.42)

φ±,E(λ, x) := i (θ±(λ)− θ±(E))φ±(λ, x), g±,E(λ) := |θ±(λ)− θ±(E)|−2
g±(λ)

for λ[E − ε, E + ε]. The functions φ±,E(λ, x) admit the representation

(2.43) φ±,E(λ, x) = c±,E(λ, x) + i (θ±(λ)− θ±(E)) s±,E(λ, x),



10 I. EGOROVA AND G. TESCHL

where c±,E(·, x), s±,E(·, x) ∈ Cm0−1([E − ε, E + ε]) and c±,E(·, x), s±,E(·, x) ∈ R.

Analogous representations hold for ∂
∂xφ±,E(λ, x). Moreover,

(2.44) φ±,E(λ, x) ∈ R, λ ∈ [E − ε, E + ε] \ σ±,

and

(2.45) g±,E(λ)−1 = ±W(φ±,E , φ±,E), λ ∈ (E − ε, E + ε) ∩ σ±.

(ii) Let µ±j 6= E. The functions φ±(λ, x) admit the same representation (2.43) on

the set [E − ε/2, E + ε/2].

Next, recalling (2.25), set

(2.46) φ̃±(λ, x) = δ±(λ)φ±(λ, x)

so that the functions φ̃±(λ, x) have no poles in the interior of the gaps of the spec-
trum σ. For each eigenvalue λk, we introduce the corresponding norming constants

(2.47)
(
γ±k
)−2

=

∫
R
φ̃2
±(λk, x)dx.

Furthermore, recall the scattering relations

(2.48) T∓(λ)φ±(λ, x) = φ∓(λ, x) +R∓(λ)φ∓(λ, x), λ ∈ σu,l
∓ ,

where the transmission and reflection coefficients are defined as usual, by

(2.49) T±(λ) :=
W(φ±(λ), φ±(λ))

W(φ∓(λ), φ±(λ))
, R±(λ) := −W(φ∓(λ), φ±(λ))

W(φ∓(λ), φ±(λ))
, λ ∈ σu,l

± .

Lemma 2.6. Suppose that q(x) ∈ Cn1(R) satisfies (2.26). Then the scattering
data

S =
{
R+(λ), T+(λ), λ ∈ σu,l

+ ; R−(λ), T−(λ), λ ∈ σu,l
− ;

λ1, . . . , λp ∈ R \ σ, γ±1 , . . . , γ±p ∈ R+

}
(2.50)

has the following properties:

I. (a) T±(λu) = T±(λl) for λ ∈ σ±.

R±(λu) = R±(λl) for λ ∈ σ±.

(b)
T±(λ)

T±(λ)
= R±(λ) for λ ∈ σ(1)

± .

(c) 1− |R±(λ)|2 =
g±(λ)

g∓(λ)
|T±(λ)|2 for λ ∈ σ(2).

(d) R±(λ)T±(λ) +R∓(λ)T±(λ) = 0 for λ ∈ σ(2).

(e) T±(λ) = 1 +O
(

1√
λ

)
for λ→∞.

(f) R±(λ) = o
(

1

(
√
λ)

n1+1

)
for λ→∞.

II. The functions T±(λ) can be extended as meromorphic functions to the domain
C \ σ and satisfy

(2.51)
1

T+(λ)g+(λ)
=

1

T−(λ)g−(λ)
=: −W (λ),

where W (λ) possesses the following properties:
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(a) The function W̃ (λ) = δ+(λ)δ−(λ)W (λ) is holomorphic in the domain
C \ σ, with simple zeros at the points λk, where

(2.52)
dW̃

dλ
(λk) = (γ+

k γ
−
k )−1.

In addition, it satisfies

(2.53) W̃ (λu) = W̃ (λl), λ ∈ σ and W̃ (λ) ∈ R for λ ∈ R \ σ.

(b) The function Ŵ (λ) = δ̂+(λ)δ̂−(λ)W (λ) is continuous on the set C \ σ
up to the boundary σu ∪ σl. Moreover, this function is m1 − 1 times
differentiable with respect to λ on the set

(
σu ∪ σl

)
\ (∂σ− ∪ ∂σ+) and

m1− 1 times continuously differentiable with respect to the local variable√
λ− E for E ∈ ∂σ− ∪ ∂σ+. It can have zeros on the set ∂σ− ∩ ∂σ+

and does not vanish at the other points of the set σ. If Ŵ (E) = 0 for

E ∈ ∂σ− ∩ ∂σ+, then Ŵ (λ) =
√
λ− E(C(E) + o(1)), C(E) 6= 0.

III. (a) The reflection coefficients R±(λ) are continuous functions on σu
± ∪ σl

±.

They are also m1 times differentiable with respect to λ on the sets σu,l
± \

{∂σ+∪∂σ−} and m1−j times differentiable with respect to the coordinate√
λ− E with E ∈ {∂σ+ ∪ ∂σ−} ∩ σu,l

± , where j = 1 if Ŵ (E) 6= 0 and

j = 2 if Ŵ (E) 6= 0. The asymptotics I. (f) hold for all derivatives as
well.

(b) If E ∈ ∂σ± and Ŵ (E) 6= 0, then

(2.54) R±(E) =

{
−1 for E /∈ M̂±,
1 for E ∈ M̂±.

Proof. Except for I. (f) and the corresponding statement for the derivatives in
III. (a) everything follows as in [19, Lemma 4.1]. To prove the missing items, we
need to prove that W(φ±, φ∓) = o(λ−n1/2) and all its necessary derivatives with

respect to
√
λ. But this follows from

W(φ±, φ∓) = φ−(λ, x)φ+(λ, x)(mq,−(λ, x)−mq,+(λ, x))

since φ−(λ, x)φ+(λ, x) = O(1) by Lemma 2.3 andmq,−(λ, x)−mq,+(λ, x) = o(λ−n1/2)
by Corollary 2.4. �

Next, recall the associated Gelfand–Levitan–Marchenko (GLM) equations

(2.55) K±(x, y) + F±(x, y)±
∫ ±∞
x

K±(x, ξ)F±(ξ, y)dξ = 0, ±y > ±x,

where2

F±(x, y) =
1

2πi

∮
σ±

R±(λ)ψ±(λ, x)ψ±(λ, y)g±(λ)dλ+(2.56)

+
1

2πi

∫
σ
(1),u
∓

|T∓(λ)|2ψ±(λ, x)ψ±(λ, y)g∓(λ)dλ

+

p∑
k=1

(γ±k )2ψ̃±(λk, x)ψ̃±(λk, y).

2Here we have used the notation
∮
σ±

f(λ)dλ :=
∫
σu
±
f(λ)dλ−

∫
σl
±
f(λ)dλ.
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As in [19, Lemma 4.2], we have the following result:

Lemma 2.7. Under the same assumptions as in Lemma 2.6, the functions F±(x, y)
satisfy

IV. F±(x, y) ∈ C(n1+1)(R2). There exist real-valued continuous functions q̃±(x),
with xm1 q̃± ∈ L1(R±), and monotone positive continuous functions C±(x),
Q±(x), which decay as x→ ±∞, with xm1−1Q±(x) ∈ L1(R±), such that for
±x > ±a, ±y > ±a and 0 ≤ n+ l ≤ n1 + 1 the inequalities hold

(2.57)

∣∣∣∣ ∂n+l

∂xn∂yl
F±(x, y)

∣∣∣∣ ≤ C±(a) (Q±(x+ y) + q̃±(x+ y)(1− δn+l,0)) .

Here δn,m is the Kronecker delta and a ∈ R is an arbitrary fixed number.
Moreover,

(2.58) ±
∫ ±∞

0

∣∣∣∣ dndxnF±(x, x)

∣∣∣∣ (1 + |x|m1)dx <∞, 1 ≤ n ≤ n1 + 1.

Proof. The GLM equation (2.55) and (2.56) are derived in [10]. Estimate (2.57)
follows directly from (2.55) and (2.40). Equation (2.58) is then immediate from
(2.57). �

As demonstrated in [10] and [19], properties I–IV are necessary and sufficient
for a set S to be the set of scattering data for operator L with a potential q(x)
satisfy (2.26).

Now the procedure of solving of the inverse scattering problem is as follows:
Let L± be two one-dimensional finite-gap Schrödinger operators associated with

the potentials p±(x). Let S be given data as in (2.50) satisfying I–IV. Define
corresponding kernels F±(x, y) via (2.56). As shown in [10], under condition IV
the GLM equations (2.55) have unique smooth real-valued solutions K±(x, y), that
satisfy estimates of type (2.57). In particular,

(2.59) ±
∫ ±∞

0

(1 + |x|m1)

∣∣∣∣ dndxnK±(x, x)

∣∣∣∣ dx <∞, 1 ≤ n ≤ n1 + 1.

Now introduce the functions

(2.60) q±(x) = p±(x)∓ 2
d

dx
K±(x, x)

and note that (2.59) reads

(2.61) ±
∫ ±∞

0

∣∣∣∣ dndxn (q±(x)− p±(x)
)∣∣∣∣ (1 + |x|m1)dx <∞, 0 ≤ n ≤ n1.

We obtain the following result.

Theorem 2.8 ([10]). Let the set of data S, defined as in (2.50), satisfy properties I–
IV. Then the functions q±(x) defined by (2.60) satisfy (2.61) and coincide, q−(x) ≡
q+(x) =: q(x). Moreover, the set S is the set of scattering data for the Schrödinger
operator (2.27) with potential q(x) satisfying (2.26).

Our next step is to describe a formal scheme for using the inverse scattering
method to solve the initial value problem for the KdV equation with initial condi-
tions q(x) satisfying (1.2) with with some quasi-periodic, finite-gap potentials p±(x)
and fixed m0 ≥ 8 and n0 ≥ m0 + 5. Consider the corresponding scattering data
S = S(0) which obey conditions I–IV with n1 = n0 and m1 = m0. Let p±(x, t)
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be the finite-gap solution of the KdV equation with initial conditions p±(x) and
let m±(λ, t), m̆±(λ, t) ψ±(λ, x, t), α±(λ, t) be defined by (2.14), (2.8) and (2.21) as
above. Also set

(2.62) ᾰ±(λ, t) =

∫ t

0

(
2(p±(0, s) + 2λ)m̆±(λ, s)− ∂p±(0, s)

∂x

)
ds.

Introduce the set S(t) by

S(t) =
{
R+(λ, t), T+(λ, t), λ ∈ σu,l

+ ; R−(λ, t), T−(λ, t), λ ∈ σu,l
− ;

λ1, . . . , λp ∈ R \ σ, γ±1 (t), . . . , γ±p (t) ∈ R+

}
,(2.63)

where λk(t), R±(λ, t), T±(λ, t) and γ±k (t) are defined ([19, Lemma 5.3]) by:

R±(λ, t) = R±(λ, 0)eα±(λ,t)−ᾰ±(λ,t), λ ∈ σ±,(2.64)

T∓(λ, t) = T∓(λ, 0)eα±(λ,t)−ᾰ∓(λ,t), λ ∈ C,(2.65) (
γ±k (t)

)2
=
(
γ±k (0)

)2 δ2
±(λk, 0)

δ2
±(λk, t)

e2α±(λk,t),(2.66)

where α±(λ, t), ᾰ±(λ, t), δ±(λ, t) are defined in (2.21), (2.62), (2.25) respectively.
In [19], it is proved, that these data satisfy I–III with g±(λ, t), defined by (2.6)

and δ±(λ), δ̂±(λ) defined by (2.25).
Introduce

F±(x, y, t) =
1

2πi

∮
σ±

R±(λ, t)ψ±(λ, x, t)ψ±(λ, y, t)g±(λ, t)dλ+(2.67)

+
1

2πi

∫
σ
(1),u
∓

|T∓(λ, t)|2ψ±(λ, x, t)ψ±(λ, y, t)g∓(λ, t)dλ

+

p∑
k=1

(γ±k (t))2ψ̃±(λk, x, t)ψ̃±(λk, y, t).

Suppose that we are able to prove that F± satisfy

(2.68)

∣∣∣∣ ∂n+l

∂xn∂yl
F±(x, y, t)

∣∣∣∣+

∣∣∣∣ ∂2

∂x∂t
F±(x, y, t)

∣∣∣∣ ≤ C

|x+ y|m1+2
n+ l ≤ n1 + 1,

as x, y → ±∞ for some m1 ≥ 2, n1 ≥ 3, and C = C(n1,m1, t). Then (2.68) implies
that condition IV holds with Q±(x) = (1+ |x|m1+2)−1, q̃±(x) = 0, and C±(a), that
exists due to continuity of functions F±(x, y, t) together with their derivatives. Thus
Theorem 2.8 ensures the unique solvability of the time dependent GLM equations

(2.69) K±(x, y, t) + F±(x, y, t)±
∫ ±∞
x

K±(x, ξ, t)F±(ξ, y, t)dξ = 0, ±y > ±x,

and yields the function

(2.70) q(x, t) = p±(x, t)∓ 2
d

dx
K±(x, x, t).

By construction q satisfies (cf. (2.61))

(2.71) ±
∫ ±∞

0

∣∣∣∣ ∂n∂xn (q(x, t)− p±(x, t)
)∣∣∣∣ (1 + |x|m1)dx <∞, 0 ≤ n ≤ n1,
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and, as in [19], one concludes that (2.68) also implies differentiability with respect
to t such that

(2.72) ±
∫ ±∞

0

∣∣∣∣ ∂∂t(q(x, t)− p±(x, t)
)∣∣∣∣ (1 + |x|m1)dx <∞.

Moreover, by following the arguments in Section 6 of [19] verbatim (see, in particu-
lar, Lemma 6.3 and Corollary 2.3) one establishes that q(x, t) solves the associated
initial-value problem of the KdV equation. Thus, to prove Theorems 1.1, it is
sufficient to prove the inequality (2.68) with m1 = bm0

2 c − 2, n1 = n0 −m0 − 2.

3. Proof of the main result

To obtain (2.68) we follow the approach, developed in [19]. First of all, recall
that the functions F±(x, y, t) are given by

F±(x, y, t) =
1

2πi

∮
σ±

R±(λ, 0)ψ̂±(λ, x, t)ψ̂±(λ, y, t)g±(λ, 0)dλ+(3.1)

+
1

2πi

∫
σ
(1),u
∓

|T∓(λ, 0)|2ψ̂±(λ, x, t)ψ̂±(λ, y, t)g∓(λ, 0)dλ

+

p∑
k=1

(γ±k (0))2ψ̆±(λk, x, t)ψ̆±(λk, y, t),

where ψ̂±(λ, x, t) are defined by (2.20) and we have set

(3.2) ψ̆±(λ, x, t) := δ±(λ, 0)ψ̂±(λ, x, t).

Furthermore, recall that the functions ψ̂±(λ, x, t) inherit their singularities from
ψ±(λ, x, 0); that is, they have simple poles on M±(0) and square-root singulari-

ties M̂±(0). Consequently, the functions (3.2) are bounded and smooth in small
vicinities of the points λk. Moreover, all integrands in (3.1) have only integrable
singularities (cf. [10, Sect. 5]) and thus all three summands in (3.1) are well defined.
Our aim is to study the decay of F±(x, y, t) as x, y tend to ±∞, respectively.

First of all, we observe, that the third summand in (3.1) (corresponding to
the discrete spectrum) together with all its derivatives decays exponentially as
x+ y → ±∞. Therefore, it satisfies (2.68) for all natural m1 and n1. In the second

summand, ψ̂±(λ, x, t)ψ̂±(λ, y, t) together with all derivatives decays exponentially
with respect to (x+y)→ ±∞ for λ /∈ σ±. Hence we have to estimate this summand

only in small vicinities of the points σ± ∩ σ(1)
∓ .

Our strategy is as follows. In both integrals of (3.1) we make a change of vari-
ables from λ to the quasimomentum variables θ± and use (2.11) to represent the
integrands as e±θ±(x+y)ρ±(λ(θ±), x, y, t), where ρ± together with their derivatives
are smooth and uniformly bounded with respect to x, y ∈ R. Moreover, since these
functions are differentiable with respect to θ± (and also bounded with respect to x
and y), we will integrate by parts both integrals in (3.1) as many times as possible
and then prove that the boundary terms either cancel or vanish.
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To investigate the validity of integration by parts for the first summand in (3.1)
we use (2.11)–(2.13) to represent the first summand as

F±,R(x, y, t) := 2 Re

∫
σu
±

R±(λ, t)ψ±(λ, x, t)ψ±(λ, y, t)
g±(λ, t)

2πi
dλ

= Re

∫ ∞
0

e±i(x+y)θ±ρ±(θ±, x, y, t)dθ±,(3.3)

where

(3.4) ρ±(θ±, x, y, t) :=
1

2π
R±(λ, 0)u±(λ, x, t)u±(λ, y, t)e2α±(λ,t)

r±∏
j=1

λ− µ±j
λ− ζ±j

,

with λ = λ(θ±). Since the integrand in (3.3) is not continuous at θ±(E±2k+1) =

θ±(E±2k+2), we regard this integral as

(3.5) F±,R(x, y, t) = Re

r±+1∑
k=0

∫ θ±(E±2k+1)

θ±(E±2k)

e±i(x+y)θρ±(θ, x, y, t)dθ,

where we have set

E±2r±+1 = E±2r±+2 = Ẽ > max{E+
2r+

, E−2r−},

and E±2r±+3 = +∞ for notational convenience.

The boundary terms arising from integration by parts (except for the last one,
corresponding to +∞) become

(3.6) Re lim
λ→E

e±iθ±(E)(x+y) ∂
sρ±(θ±,x,y,t)

∂θs±

(i(x+ y))
s+1 , E ∈ ∂σ± ∪ Ẽ, s = 0, 1, . . . ,m.

The number m of possible integrations by parts is directly related to the smoothness
of R±(λ, 0) and thus the to the values of m0 and n0. To estimate the boundary
terms in (3.5) we distinguish three cases:

1) E ∈ ∂σ± ∩ ∂σ (points E1, E2 in our example and also point E3 for
F−,R(x, y, t));

2) E ∈ ∂σ± ∩ int(σ∓) (the point E5 for F−,R(x, y, t));

3) E ∈ ∂σ(1)
− ∩ ∂σ

(1)
+ (the point E4).

In the first case, the boundary terms (3.6) will vanish. In the second and the
third cases, however, these terms do not vanish, but we will prove, that they cancel
with a corresponding terms from the second summand in (3.1). Finally, the two

boundary terms stemming from our artificial boundary point Ẽ will cancel and
hence do not need to be taken into account.

The following result which takes care of 1), is an immediate consequence of the
proof of [19, Lemma 6.2].

Lemma 3.1. Let E ∈ ∂σ±∩∂σ. Then the following limits exists and assume either
real or purely imaginary values:

(3.7) lim
λ→E, λ∈σ±

e±iθ±(E)(x+y) ∂
s

∂θs±
ρ±(θ±, x, y, t) ∈ isR,

for s = 0, . . . ,m0 − 1 if Ŵ (E) 6= 0 and s = 0, . . . ,m0 − 2 if Ŵ (E) = 0.
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This lemma shows, that the boundary terms (3.6) vanish at the points corre-
sponding to case 1). Before turning to the cases 2) and 3) let us first start by
discussing smoothness of the integrand ρ±(θ, x, y, t) in (3.5).

Since except for R±(λ, 0), all other parts of ρ±(θ±, x, y, t) are smooth with re-
spect to λ ∈ int(σ±), it suffices to look at R±(λ, 0). By Lemma 2.6, III. (a) the
latter function has m0 derivatives with respect to λ (and consequently also with
respect to θ±) as long as we stay in the interior of σ± and away from boundary
points of σ∓. Hence no such points pose any problems; the only problematic points
are those in ∂σ∓ ∩ int(σ±) (the point E5 in our example for F+,R(x, y, t)). Hence
we will address this issue first.

Let E ∈ ∂σ∓ ∩ int(σ±) be such a point. As already pointed out, only R±(λ, 0)
matters and by Lemma 2.6, III. (a) we can write it locally as a smooth function
of
√
λ− E. Thus we obtain

(3.8)
∂sρ±(θ±, x, y, t)

∂θs±
= O

(
1√

(λ− E)2s−1

)
.

Since this singularity is non-integrable for s ≥ 2, integration by parts is not an
option near such points. Hence we ill split off the leading behavior near such a
point. The leading term near each such point can be computed explicitly and the
remainder can be handled by integration by parts.

Since the last interval (Ẽ,∞) does not contain such points we can restrict our
attention to finite intervals. Moreover, for notational convenience we will restrict
ourselves to the case of F+,R.

Abbreviate θ = θ+ and denote by

Ei ∈ ∂σ− ∩
(
E+

2j , E
+
2j+1

)
, i = 1, . . . , N,

our bad points. Let ε > 0 and introduce the cutoff functions

(3.9) Bi(θ) := B(
θ − θ(Ei)

ε
), i = 1, . . . , N,

where

(3.10) B(ξ) =

{
e−ξ

2 (
1− ξ2m0

)m0
, for |ξ| ≤ 1,

0, for |ξ| ≥ 1.

We choose ε > 0 so small that the supports of the functions Bi(θ) neither intersect
nor contain small vicinities of the points θ(E+

2j) and θ(E+
2j+1). Moreover, we have

(3.11)

dsBi
dθs

(θ(Ei)± ε) = 0, , s = 0, . . . ,m0 − 1,

dsBi
dθs

(θ(Ei)) = 0, s = 1, . . . , 2m0 + 1.
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Now we can rewrite the j-th summand in (3.5) (except for the last one) as∫ θ(E+
2j+1)

θ(E+
2j)

ei(x+y)θρ+(θ, x, y, t)dθ =

=

∫ θ(E+
2j+1)

θ(E+
2j)

ei(x+y)θ

(
1−

N∑
i=1

Bi(θ)

)
ρ+(θ, x, y, t)dθ+

+

N∑
i=1

∫ ∞
−∞

ei(x+y)θBi(θ)ρ+(θ, x, y, t)dθ.

Because of (3.11) the first term can be integrated by parts m0 times and thus
is covered by Lemma 3.1. For the second term, we switch to the local variable
z =

√
θ − θ(Ei) and use a Taylor expansion for the integrand,

ρ+(θ, x, y, t) = ρ
(i)
0 (x, y, t) + ρ

(i)
1 (x, y, t)z + · · ·+ ρ

(i)
m0−1(x, y, t)zm0−2 + βi(θ),

where βi(θ) = O
(
zm0−1

)
has bm0

2 c integrable derivatives with respect to θ in a
small vicinity of the point θ(Ei). By construction

∂s(Biβi)

∂θs
(θ(Ei)± ε) = 0, s = 0, . . . , bm0

2
c,

and thus

(3.12)

∫ ∞
−∞

ei(x+y)θBi(θ)βi(θ)dθ = O
(

(x+ y)−b
m0
2 c
)
.

To compute the remaining terms, observe that∫ ∞
−∞

ei(x+y)θBi(θ)
(√

θ − θ(Ei)
)ν
dθ =

= (ε)ν/2+1ei(x+y)θ(Ei)

∫ 1

−1

e−ζ
2+iε(x+y)ζ

(
1− ζ2m0

)m0
ζν/2dζ,

and note that we can extend the integral over the interval (1, 1) to the interval(−∞,∞),
since ∫ ±∞

±1

e−ζ
2+iε(x+y)ζ

(
1− ζ2m0

)m0
ζν/2dζ = O

(
(x+ y)−m0−1

)
.

Now we simply expand(
1− ζ2m0

)m0
= 1−m0ζ

2m0 + · · ·+ (−1)m0ζ2m2
0

and evaluate the integral by invoking the integral representation [33, 9.241]3 for the
parabolic cylinder functions Dκ(z) (cf. [33], [54]). This gives∫ ∞

−∞
eiε(x+y)ζe−ζ

2

ζκdζ =

= (−i)κ2−κ/2
√
π exp

(
−ε

2(x+ y)2

8

)
Dκ
(
ε(x+ y)√

2

)
, Re(κ) > −1.(3.13)

Since the parabolic cylinder functions have the following expansion [33, 9.246 1],

Dκ(z) ∼ zκe−
z2

4

(
1− κ(κ− 1)

2z2
+ · · ·

)
, | arg(z)| < 3π

4
,

3It also follows from 3.462 3, but this formula contains a sign error.
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for large z, the integral (3.13) decays exponentially as (x+ y)→∞ for any κ > 0.
Combining these estimates with Lemma 3.1 we obtain the following

Lemma 3.2. Let E±2j , E
±
2j+1 ∈ ∂σ± ∩ ∂σ. Then

(3.14)
∂n+l

∂xn∂yl
Re

∫ θ±(E±2j+1)

θ±(E±2j)

e±i(x+y)θρ±(θ, x, y, t)dθ = O
(

(x+ y)−b
m0
2 c
)

as x, y → ±∞ for all fixed n, l = 0, 1, . . . .

Note, that the condition E±2j , E
±
2j+1 ∈ ∂σ± ∩ ∂σ is only used to take care of the

boundary terms obtained from integration by parts and can hence be replaced with
any other condition which takes care of these terms.

Now we come to case 2) and study the behavior of the boundary terms at the
points E ∈ ∂σ± ∩ intσ∓. In this case formula (3.7) remains valid only for s = 0, so
we need to take the second summand in (3.1) into account.

For notational convenience we consider only the + case and assume, without
loss of generality, that E = E+

2j . In this case, σ(2) is located to the right of E

and σ
(1)
− to the left. Moreover, without loss of generality, we assume that the other

boundary terms are already covered by the previous considerations so that we do
not have to worry about them.

Choose ε > 0 so small that

[λ(θ+(E) + iε), E] ⊂
(

(ξ+
j , E] ∩ σ(1)

−

)
, (E, λ(θ+(E + ε))] ⊂ intσ(2).

Introduce in these two small intervals the two new (positive) variables

(3.15) h :=
θ+ − θ+(E)

i
, k := θ+ − θ+(E).

We compare the boundary terms at the point E for the two integrals:
(3.16)

Re

∫ θ(E+ε)

θ(E)

ei(x+y)θ+ρ+(θ+, x, y, t)dθ+ = Re

∫ ε

0

R(k)Ψ(λ(k), x, y, t)eik(x+y)dk

and ∫ E

λ(θ(E)+iε)

|T−(λ, 0)|2ψ̂+(λ, x, t)ψ̂+(λ, y, t)
g−(λ, 0)

2πi
dλ =

=

∫ 0

ε

P (h)Ψ(λ(h), x, y, t)e−h(x+y)dh,(3.17)

with

(3.18) Ψ(λ, x, y, t) =
eiθ(E)(x+y)

2π

r+∏
j=1

λ− µ+
j

λ− ζ+
j

e−i(x+y)θψ̂+(λ, x, t)ψ̂+(λ, y, t),

and

R(k) :=R+(λ, 0),(3.19)

P (h) :=
−i

2g+(λ, 0)g−(λ, 0)|W (λ, 0)|2

=
−i

2g+(λ, 0)g−(λ, 0)W0(φ−, φ+)W0(φ−, φ+)
,(3.20)
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where W0(·, ·) = W(·, ·)|t=0. Equation (3.20) was obtained by using (2.51) together

with the fact that g−(λ, 0) = −g−(λ, 0) if λ ∈ σ−.
Integrating (3.16) and (3.17) by parts with respect to k and h, respectively, gives∫ 0

ε

P (h)Ψ(λ(h))e−h(x−y)dh = −
m−1∑
j=0

1

(x− y)j+1

∂j(PΨ)

∂hj
(0)

+
1

(x− y)m

∫ 0

ε

∂m(PΨ)

∂hm
e−h(x−y)dh+O(e−ε(x−y)),(3.21)

Re

∫ ε

0

R(k)Ψ(λ(k))eik(x−y)dk = Re

m−1∑
j=0

1

(−i(x− y))j+1

∂j(RΨ)

∂kj
(0)

+ Re
1

(−i(x− y))m

∫ ε

0

∂m(RΨ)

∂km
eik(x−y)dk.(3.22)

For the boundary terms to cancel each other we need

(3.23) lim
k→0

Re

(
ij+1 ∂

j(RΨ)

∂kj
(k)

)
= lim
h→0

∂j(PΨ)

∂hj
(h), j = 0, . . . ,m0 − 1,

where the left limit is taken from the side of the spectrum of multiplicity two and
the right limit is taken from the side of the spectrum of multiplicity one. Since Ψ
is smooth to any degree with respect to k and h near E,

(3.24) lim
k→0

(
ij
∂jΨ

∂kj
(k)

)
= lim
h→0

∂jΨ

∂hj
(h), j = 0, . . .

We observe that to prove (3.23), it suffices to prove the following lemma.

Lemma 3.3. Let h, k, P (h), R(k) be defined by (3.15), (3.19), and (3.20). If E ∈
∂σ± ∩ int(σ∓), then

(3.25) lim
k→0

Re

(
ij+1 d

jR(k)

dkj

)
= lim
h→0

djP (h)

dhj
, j = 0, . . . ,m0 − 1.

Proof. To prove this formula, recall that φ−(·, x), φ−(·, x) ∈ Cm0(E−ε, E+ε) (and
similarly for the x derivative) since E ∈ intσ−. Therefore their derivatives with
respect to

√
λ− E are smooth in a vicinity of k = 0. Without loss of generality,

we suppose4, that E 6= µ+
j , that is, the function φ+(λ, x, 0) as well as the functions

g+(λ, 0) and g−(λ, 0) (see (2.6)) are also smooth with respect to
√
λ− E. For λ > E

introduce the function

P̃ (k) :=
−i

2g+(λ, 0)g−(λ, 0)W0(φ−, φ+)W0(φ−, φ+)
.

Then

(3.26) lim
k→+0

is
dsP̃ (k)

dks
= lim
h→+0

dsP

dhs
.

From g±(λ, 0)−1 = ±W0(φ±, φ±) we see that

(3.27) P̃ (k) =
i W0(φ−, φ−)W0(φ+, φ+)

2W0(φ−, φ+)W0(φ−, φ+)
.

4Otherwise replace φ+(λ, x, 0) by φ+,E(λ, x, 0) and g+(λ, 0) by g+,E(λ, 0) (cf. (2.42)) in the

subsequent considerations.
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Substituting

φ+(λ, x, 0) =
W0(φ+, φ−)

W0(φ−, φ−)
φ−(λ, x, 0)− W0(φ+, φ−)

W0(φ−, φ−)
φ−(λ, x, 0)

into the numerator of (3.27) gives

P̃ (k) =
i

2

(
−W0(φ−, φ+)

W0(φ−, φ+)
+

W0(φ−, φ+)

W0(φ−, φ+)

)
.

Introducing the abbreviations

(3.28) W (k) := W0(φ−, φ+), V (k) := W0(φ−, φ+).

we thus have

(3.29) R(k) = − V (k)

W (k)
, P̃ (k) =

i

2

(
− V (k)

W (k)
+
W (k)

V (k)

)
.

Next, for all x and small ε > 0, we have

φ−(λ, x, 0),
∂

∂x
φ−(λ, x, 0) ∈ Cm0(E − ε, E + ε).

Therefore, according to Lemma 2.5 (ii), near k = 0, for positive k, we have the
representation

W (k)− V (k) = ikf1(k2), W (k) + V (k) = f2(k2),

where f1,2(·) ∈ Cm0−1([0, ε1)). Differentiating these relations gives

(3.30) lim
k→+0

∂s

∂ks
V (k) = (−1)s lim

k→+0

∂s

∂ks
W (k), s = 0, . . . ,m0 − 1,

and hence we see that V (k) = Wm0−1(−k) + o(km0−1), where Wm0−1(k) is the
Taylor polynomial of degree m0 − 1 for W (k). Now recall

W0(φ−, φ+)(E) 6= 0,

which implies that R−1(k) = Rm0−1(−k)+o(km0−1), where Rm0−1(k) is the Taylor
polynomial of degree m0 − 1 for R(k). Thus, we finally obtain

(3.31) P̃ (k) =
i

2

(
Rm0−1(k)−Rm0−1(−k)

)
+ o(km0−1),

from which (3.25) follows. �

Lemma 3.3 settles case 2). Case 3) will follow from the next lemma.

Lemma 3.4. Let h, k, P (h), R(k) be defined by (3.15), (3.19), and (3.20). Then,

if E ∈ ∂σ(1)
− ∩ ∂σ

(1)
+ ,

(3.32) lim
k→0

Re

(
ij+1 d

jR(k)

dkj

)
= lim
h→0

djP (h)

dhj
, j = 0, . . . ,m0 − 1.

Proof. Note that now we cannot proceed as in case 2) since now we no longer
have spectrum of multiplicity two to the right of E. In particular, we cannot use
g−(λ, 0)−1 = −W0(φ−, φ−) for λ > E, we do not have the scattering relations at
our disposal, and φ−(λ) 6∈ Cm0(E − ε, E + ε). Hence we need a different strategy.
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Let5 E /∈ M̂−(0) ∪ M̂+(0). Consider φ±(λ, x, 0) and note that for sufficiently
small ε, we can write (see Lemma 2.5)

(3.33) φ−(λ, x, 0) =

{
f−1 (h2, x) + ihf−2 (h2, x) + o(hm0−1), E − ε < λ ≤ E,
f−1 (−k2, x) + kf−2 (−k2, x) + o(km0−1), E + ε > λ ≥ E,

where f−1 (z, x), f−2 (z, x) are real-valued functions which are polynomials of degree
m0 − 1 with respect to z and differentiable with respect to x. Next, define

(3.34) φ̆−(λ, x, 0) =

{
f−1 (h2, x)− ihf−2 (h2, x), λ ≤ E,
f−1 (−k2, x)− kf−2 (−k2, x), λ ≥ E,

and note that φ−(λ, x, 0) = φ̆−(λ, x, 0) + o(hm0−1) for E − ε < λ ≤ E.
Similarly, we write

(3.35) φ+(λ, x, 0) =

{
f+

1 (h2, x) + hf+
2 (h2, x) + o(hm0−1), E − ε < λ ≤ E,

f+
1 (−k2, x)− ikf+

2 (−k2, x) + o(km0−1), E + ε > λ ≥ E,

and define

(3.36) φ̆+(λ, x, 0) =

{
f+

1 (h2, x)− hf+
2 (h2, x), λ ≤ E,

f+
1 (−k2, x) + ikf+

2 (−k2, x), λ ≥ E,

implying φ+(λ, x, 0) = φ̆+(λ, x, 0) + o(km0−1) for E + ε > λ ≥ E. In particular,
note that

ij
∂j

∂hj
φ̆±(λ, x, 0) =

∂j

∂kj
φ̆±(λ, x, 0), λ = E, 0 ≤ j ≤ m0 − 1.

Moreover,
(3.37)

g±(λ, 0) = ±W(φ±(λ, ., 0), φ̆±(λ, ., 0)) + o
(
(λ− E)(m0−1)/2

)
, λ ∈ (E − ε, E + ε).

While the above Wronskian depends on x (φ̆± do not solve (2.28) in general), the
leading order is independent of x. Here and in all following Wronskians below, we
set x = 0 (and of course t = 0). Now consider (cf. (3.20))

P (λ) =
−i

2g+(λ, 0)g−(λ, 0)W0(φ−, φ+)W0(φ−, φ+)
, λ < E,

and set

(3.38) P̃ (λ) =
i

2

W(φ−, φ̆−)W(φ+, φ̆+)

W(φ−, φ+)W(φ̆−, φ+)
, λ ∈ (E − ε, E + ε),

implying

P (λ) = P̃ (λ) + o
(
(λ− E)(m0−2)/2

)
, E − ε < λ ≤ E

In particular,6

(3.39)
∂j

∂hj
P (λ) = ij

∂j

∂kj
P̃ (λ), λ = E, 0 ≤ j ≤ m0 − 2.

5Again, otherwise replace φ±(λ, x, 0) by φ±,E(λ, x, 0) and g±(λ) by g±,E(λ) (cf. Lemma 2.5)

in the subsequent considerations.
6Note that if W(φ+, φ−)(E) = 0, we loose one derivative, in which case we have W(φ+, φ−) =

Ck(1 + o(1)) by Lemma 2.6 II. (b).
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Using the Plücker identity

W(f1, f2)W(f3, f4) + W(f1, f3)W(f4, f2) + W(f1, f4)W(f2, f3) = 0

with f1 = φ−, f2 = φ̆−, f3 = φ+, and f4 = φ̆+ we can rewrite P̃ (λ) as

P̃ (λ) =
i

2

(
− V (k)

W (k)
+
W̆ (k)

V̆ (k)

)
,

where

W (k) := W(φ−, φ+), V (k) := W(φ−, φ̆+),

and

W̆ (k) := W(φ̆−, φ̆+), V̆ (k) := W(φ̆−, φ+).

Moreover, using (3.33)–(3.36), one can verify that

W̆ (k)

V̆ (k)
=

(
V (−k)

W (−k)

)
+ o(km0−1).

Now, since V (k) = W0(φ−, φ+) + o(km0−1), we obtain

(3.40) R(k) = − V (k)

W (k)
+ o(km0−2).

This implies

(3.41) Re

(
ij+1 ∂j

dkj
R(0)

)
= ij

∂j

∂kj
P̃ (0) =

∂jP

∂hj
(0), j = 0, . . . ,m0 − 2,

and we are done. �

Finally we discuss the possibility of integrating the last (unbounded) integrand
of (3.5) by parts. More precisely, we discuss the boundary terms corresponding to
the point E+

2r++3 = +∞ (again the considerations are the same for the + and −
cases, and we study only the + case). To begin, we recall the well-known asymptotic
expressions

m+(λ) = i
√
λ(1 + o(1)), θ(λ) =

√
λ(1 + o(1))

as λ→∞. Moreover, (recall α+(λ, t) = 4i(
√
λ)3t(1 + o(1))) we also have

∂s

∂θs
u+(λ, x, t) = O(1),

∂s

∂θs
eα+(λ,t) = O(tθ2s).

As in the previous cases, the only interesting part is the reflection coefficient
R+(λ, 0) for which we have

(3.42)
∂s

∂θs
R+(λ, 0) = O(θ−n0−1), s = 0, . . . ,m0,

as λ→∞ by Lemma 2.6 III. (a). Hence we conclude that

∂s

∂θs+
ρ+(λ(θ), x, y, t) = O(θ2s−n0−1), as λ→∞,

uniformly with respect to x, y ∈ R and t ∈ [0, T ] for any T > 0. As a consequence
we can perform m ≤ bn0

2 c partial integrations such that the boundary terms at ∞
vanish.

In summary, supposing (1.2), the maximum number of integration by parts is
determined by Lemma 3.2; that is it is determined by the points intσ+ ∩ ∂σ−, and
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is given by bm0

2 c. So, excluding case 3), we have an almost complete picture. How-
ever, up to this point, we have only looked at FR,+(x, y, t) and have not considered
derivatives with respect to x, y, t. Fortunately, since R+(λ, 0) is evidently indepen-
dent of these variables and all other terms of the integrand (3.5) (except for the last
summand in (3.5)) can be differentiated as often as we please, these derivatives do
not affect our analysis. Moreover, for this last summand, one has only to take into
account that a partial derivative with respect to x or y adds O(θ+) (from eiθ+(x+y))
and a partial derivative with respect to t adds O(θ3

+) (from eα+(λ,t)). Thus we
obtain the following result.

Lemma 3.5. Let q(x) satisfy (1.2). Then
(3.43)

F+(x, y, t) =
1

(x+ y)b
m0
2 c

(
H(x, y, t) +

∫ +∞

Ẽ

ei
√
λ(x+y)+4i(

√
λ)3tH1(λ, x, y, t)dλ

)
,

where Ẽ > max{E+
2r+

, E−2r− , 1}. The function H(x, y, t) is smooth on the set D :=

[0,+∞)× [0,+∞)× [0, T ]. All partial derivatives with respect to x, y, t of function
H are bounded on D. The function H1(λ, x, y, t) is bounded on λ and smooth with
respect to x, y, t ∈ D. Moreover,

(3.44)
∂l+s+k

∂xl∂ys∂tk
H1(λ, x, y, t) = o

((√
λ
)l+s+3k−n0−2+2bm0

2 c
)

as λ→∞,

uniformly on D.

Lemma 3.5 shows that for the integral in (3.43) and its derivatives with respect
to x, y, t to converge, it is sufficient that l+s+3k+2bm0

2 c−n0 < 0. A comparison to
(2.68) shows that to guarantee a classical solution (three derivatives with respect
to x and one with respect to t) of the KdV equation, we need at least l + s =
4, k = 0 and l + s = 1, k = 1 to hold; that is, we need m0 and n0 to satisfy
4 + 2bm0

2 c − n0 < 0. Since we also need bm0

2 c − 2 ≥ 2, this yields the conditions
m0 ≥ 8 and n0 ≥ 2bm0

2 c+ 5.
In particular, if (1.2) holds for all m0, n0 ∈ N (Schwartz-type perturbations),

then the same is true for the solution. Thus this provides a generalization of the
main result from [19] without any restriction on the background spectra.
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