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Abstract

We discuss some problems of the dynamics of neural networks, in particular, the rigorous
results on the critical capacity of the Hopfield model, the cavity method for spin glass and
the rigorous solution of the Gardner problem.

1 Critical capacity of neural network models

The spin glass and neural network theories are of considerable importance and interest for a
number of branches of theoretical and mathematical physics (see [MPV] and references therein).
Among many topics of interest the analysis of the different models of neural network dynamics
is one of the most important because of its numerical links with computer applications, in
particular, with the models of the associative memory. To discuss these models let us start from
a simple example.

Suppose that we have p chosen ”patterns” and we want to teach computer to recognize them,
when they are slightly modified. Fore example, these patterns can be hand-written letters, some
sequences of sounds ("words”), some pictures of people etc. Let us map these patterns into
the sequences of £1 of length N (usually N is very big): &) = (f%"), ... ,55\‘;)) (SE”) = +1)
(p=1,...,p).

Now consider the set ¥y = {o € R, 0; = £1} of all possible sequences of 1 of length N

with a usual distance: N

lo =o'l = (0i — o).
i=1
Consider also some initial configuration o(0) = (01(0),...,0n5(0)) € Xn which is close
enough to one of chosen patterns, e.g. to @)
l(0) = €M < &N, (1.1)

Our goal is to introduce some sequential dynamics on Xy in such a way to be sure that, starting
from any o (0), satisfying the above condition we arrive at the end into £€(*). Moreover, we want
to have the same property of our dynamics around any of chosen patterns.

One of the most popular ways to introduce the sequential dynamics on Yy is the following:

N
op(t+1) =signq > Jpios(t) o, (1.2)
=17k

where the matrix of interactions {.J;;} (not necessary symmetric) depends on the concrete model.
In the mathematical models usually {5(“) }ﬁzl are chosen i.i.d. random vectors with i.i.d.

components fz(“) (1t = 1,...,N), assuming values +1 and E{SZ(”)} = 0. Here and below we
denote by E{...} the averaging with respect to all random variables of the problem.



Now the problem of storing p chosen patterns is transformed into the following mathematical
problem:

Problem 1: To introduce interactions {Jij}lj‘yjﬂ in such a way that chosen random indepen-

dent vectors {E(”’)}ﬁ:l (patterns) with i.i.d. components fZ(M) = =41 are the fized points of the
dynamics (1.2).

To analyze dynamics (1.2) usually it is useful to consider also the energy function (the
Hamiltonian)

1
H(O’) = —5 Z ijUjUk.
J#k
It is easily seen that the function H (o (t)) does not increase in the process of evolution. Thus,
the dynamics of the model depends on the ”energy landscape” of the function H(o) and the
local minima of the function are the fixed points of dynamics.
Hopfield [H] was one of the first who proposed a possible form of the matrix J;,. He
introduced the matrix of the form

1 () o)
ijzﬁﬂzlsj &, (1.3)

where ¢#) (1 =1,...,p) are chosen patterns.

It is easy to check that if p is finite and N — oo, then with probability 1, starting from any
points close enough to any of the patterns £ (see condition (1.1)), the dynamics (1.2) will stop
at the point &),

The next problem which it is natural to study is the possibility for p to increase together
with N, so that our dynamical system has the same property as N,p — oc. How big can be p
comparing with N7 This problem was solved by Mac Eliece et al[McEPRV]. They proved that
if p < N/4log N, then {5(“)}1;:1 are the fixed points of the dynamics (1.2) for the Hopfield

model. If p >> N/log N, {E(”)}Zzl are not fixed points of (1.2).

Let us transform a bit Problem 1. We assume now that the fixed points of dynamics do not
coincide exactly with £(#) but are situated in such a small neighborhoods of & (1) that anyway
we can distinguish different patterns.

Numerical computations shows that such a picture is observed if p/N — «, as p, N — oo,
and o < ag, a, ~ 0.138.... For these a the dynamics (1.2), starting from any initial point o (0)
close enough to one of the patterns ) converges quickly to some fixed point, which is very
close to €W, And if & > o the dynamics (1.2) becomes chaotic.

The first rigorous result for the Hopfield model with p/N — a, as p, N — oo was obtained
by Newman [N]. He proved that for a < 0.056..., an ”energy barrier” exists with probability 1
around every pattern £(#), i.e. there exist some positive numbers § < 1 /2 and ¢, such that for
any o, belonging to
Qf = {o:|lo — W] = 4[sN]}
the inequality holds
H(o) — H(EW) > eN

To illustrate the methods of the field let us explain in a few lines the idea of the proof. We
denote A = { min (H(o) — H(EW)) > 6N} and show that
ocal

Prob{A} < e €. (1.4)



It is easy to see that

Prob{A} = Prob{Ugcqi{H (o) — H(EMD) <eN}} < Z Prob{H(o) — H(£W)) < eN}
ocql

= CONProb{11(aD)) — 1 (¢M) < eN}

where o(1:9)

is some fixed point in Qf, e.g.
o = gl (k=1,...,[bN]), o™ =¢l, (k=1+[N],...,N)
According to the Chebyshev inequality
Prob{#H (1)) — 1 (M) < eN}
<minE {exp {)\ (—7—[(0'(1’5)) + H(EW) + 6N> }}

A>0
: o= ) >
_ : —1/2 K —1/2 I3
_r§1>151 E exp{A(N / Zfz ) <N / Z fz > +>\6}
pn=1 =1 j:[(SNH-l

= exp{—N(¢(6, 6) + 0(1))}

It is evident that if for some « there exist 6, e such that ¢(8,e) > N~!log C](\éN) ~ dlogd+ (1—
) log(1—0), then the the inequality (1.4) holds and so, according to the Borrel-Cantelli lemma,
the energy barrier exists with probability 1. One can show, that if such a ”barrier” exists, then
inside each open ball

BY={o:llo—®|P <2BN)}, (u=1,....p)

there exists a point of local minimum of the function H (o), which, as it was mentioned above,
is the fixed point of dynamics (1.2).

This result was improved by Loukianova [L]. Using a similar method, she proved the existence
of the energy barriers for a < 0.071, so «, > 0.071.... Then this result was improved a little by
Talagrand [T1].

In the paper [FST] a novel approach of study a. was introduced. This approach is based
upon analysis of the Fourier transform of the joint distribution of the effective fields

gr=N1Y S el (1.5)

It enables us to obtain a new bound for the critical capacity (a. > 0.113..) and also allows us
to find an asymptotic (for small &) behavior of the distance between the fixed points and the
nearest patterns.

The idea of the method is to study the probability that the point &% ¢ Q(ls is a local
minimum of the function (o) on ©}. This means that

H(oD)) — 1 (a03R)y < 0,

1767j7k)

for any o € Q}; which is the “nearest neighbor” in Q};, where

g;

1) . .
(1767k7j) — { O-Z(L )’ ¢ #j’k

1,6 .
—o; ", otherwise



(k=1,...,[0N]and j =[0N] +1,...,N).
After some transformations we are faced with the problem to find

[6N] N
Px(q,¢50.0) = EQ [[ 0@k —a1) ] 0k —a2)y,
k=1 ]

k=1+[5N
. : L z=>0 | . :
where 7y, are the effective fields defined by (1.5), 0(z) = { 0 0 is the Heaviside function,
T <

and
ag=a+1-20+q, a=a—1+25+¢

The following theorem proven in [FST] gives us the motivation to study the asymptotic behavior
as N — oo of the function Py(q,q'; @, 9):

Theorem 1. Denote by A the event that there exist some §,¢ > 0 and some point a° : ||e® —
EM||2 < 46N, such that

mingco1 H(o) —H(a%) > 2N.

Then if for some a and ¢

: 1 . [6N]
rglfg(h]{]nj;pN (log Pn(q,—q;a,6) +1og Cy ) <0, (1.6)

then there exists some C() > 0 such that Prob{A} < e~ NC(®),

The main technical result of the paper [FST] is the theorem which describes the asymptotic
behavior of the function Py(q,¢';@,d), as N — oo is given by Theorem 2 below. We would like

to stress that the proofs for the cases of Gaussian 52(” ) and nongaussian fz(“ ) are very different.
In the Gaussian case the computations are not very simple, but they are straightforward. We
express the function Py (g, ¢; , §) in terms of the joint Fourier transform F(¢) (¢ = (¢1,---,¢N))
of the distribution of the effective fields zj (1.5).

N
F(¢) = 2m) M exp{i ) #x(h}) = (2m) V20,
k=1
where we denote & = (a',...,aP), v = (¥',...,9P) with
N N
= NS e, = N2y,
k=1 Jj=1
It is easy to see that
(62"&“17“) _ (271_)71 / duudvu<6i(u“ﬁ“+v“6“)>67iu“v“ )
Thus, using the inverse Fourier transform for the function F'(¢), we get

1 N N
Py(q,q's.0) = W/}I[Wm —ak)d$k/dCeXP{—i;fEka}F(C)
=1 =1

N
= 7(%)(1]\’“’) /e—z‘(u,v)dudvkl_[l/d:vw(:vk —ak)/dgk(exp{—igkxk + (@, u) +i(9,v)}),



ay, kg[éN],
as, k)>[(5N]

But, since fZ(M ) are independent normal variables,

where we denote for simplicity a = {

(exp{—ilxxy + i(w,u) +i(, 'v)})
(u)

/H exp{z UQZU’% o+ N™ 1/221)"5

pn=1 pn=1

L u vH)?
= Hexp{—i( #Q;]—; Y o7
p=1

Therefore

1

Pn(g.q0,8) = ————
N(Q7Q7a’ ) (271')(%+p)

/dudv exp{—i(u,v) — %(U,v)}

N — 1T N~Yu,v))?
1:[/ k k)exp{( k+ 2U2( ) 1

where U = (u, u)/2N~1/2. Integrating with respect to z, we get
; g g g

il ap —iN (u,v
Py(q,¢;,8) = (2m) 7P dudvexp{—i(u,v)—l(v,v)}HH( k—iN Huv))
2 k=1 U

Now let us fix u and change variables in the integral with respect to v
1
v = \/—ﬁ(el,v), vo = (€2,),...,vp = (ep, v),

where {e;}¥_, is the orthonormal system of vectors in R? such that e} = (Uv'N) lu#. Then,
integrating with respect vo, ..., v,, we obtain

Px(q,q; @, 6) = (2m) @Y /2/ Hd“” /dv1 exp{—iNUv; — g(m)2
aq . az .
+ [Nd]log H(ﬁ —iv1) + (N — [N9]) log H(U —iv1)}.

Using the spherical coordinates in the integral with respect to u and integrating with respect
to angular variables, we get

Px(ad50,0) =T) [ a0 [ dvyexpllp - 1logt ~ iNU - 5 (0)°
+[N]log H(“—U1 — 1) + (N — [N4]) log H(“—U? — i)}

Then, using the saddle point method we obtain the asymptotic expression (1.8).
The difference of non-Gaussian case from the Gaussian one is that we have, in (1.7),

p p 2
utCr + vH ut(y, + vH
H cos @T instead of EQXP{—%}. To replace the former term by the
latter one we have to estimate the difference between them for different w, v and {. Besides,
since most of integrals do not converge absolutely, hence the estimates of the absolute values



(differently from the Newman work) do not work. This produces so many technical difficulties
that in the nongaussian case we are able to prove only the upper bound for Py(q,¢’; a, d). Till
now there are some doubts that the true asymptotic for Py (q, ¢'; ., d) for all values of parameters
q,q,a,d coincides with that for the Gaussian case. But the remarkable fact is that in the field
of parameters which we need to study in order to apply Theorem 1 we can prove that the upper
bound for Py(q,q’; @, ) coincides with the asymptotic expression for Py(q,q’; @, ) in the case

of normal 52(” ),

Theorem 2. For the Gaussian i.i.d. fg“)

lim N~ 'log P ! — - : n_ % @
Ngnoo 0og N(QaQaaﬂ(s) Iélggm‘}nfo(U,V,a,é,q,q) 2 oga + 2

where ) *
FoU,V;ia,b,q,q) = (SIOgH(%1 —V)+(1-9) logH(%Q —V)

1 1 [
UV +=V?+aloglU, (H(z)=— -t /th)
2 e < (@) ez

For the Bernulli i.4.d. fg”) :

limsup N !log Py(q,¢"; o, 8) < maxmin}"éD)(U, Via,d,q,q) — @ log a + g
N—oo U>0 V 2 2

(D)

where Fy ' (U, V;,6,q,¢") > Fo(U,V;,0,q,¢") ( see [FST] for the exact expression of

FPNUV;a,6,0,¢).

As it was already mentioned above, in the field of interest

FPUUV;0,6,0,4) = Fo(U, Vi, 6,q,4)

3

(1.8)

Remark 1. Numerical calculations show that condition (1.6) is fulfilled for any a < of =

0.113...

The result of Theorem 2 also enables us to obtain a rather simple upper bound for the
probability to have a fixed point of the dynamics (1.2) at the distance ¢ from the first pattern:

Theorem 3. P} (6, ) - the probability to have a fized point of the dynamics of the Hopfield

model at the distance 0 from the first pattern has an upper bound of the form:

1—-26
Ja
1]}

Py (6, a) < exp{N[—dlogd — (1 —d)log(1l —d) + dlog H(

+(1 —9)log H(—%) +0(e™ ) + o(8loga™") + of

)

It is shown in [FST] that this bound becomes asymptotically exact for small a (o — 0).

Moreover, Theorem 3 implies very important corollary:

Corollary 1. It follows from Theorem 3, that é.(«)- the minimal § for which Py (6, a) does not

decay exponentially in N, as N — oc, has the asymptotic behaviour

A _1/9qa
de(a) ~ \/%6 1/2a

This result coincides with the formula found by Amit et al [AGS] with replica calculations.



2 The Hopfield model of spin glasses

Now we discuss another method to study the Hopfield model - so-called statistical mechanics
approach. This approach is based on the observation that if we take some positive parameter (3
(usually g is called the inverse temperature) and introduce the Gibbs measure on Xy = {o €
RV, o; = £1} of the form

(=23 Y (e POz = YT e PO,

ocXy ocXy

then this measure is an invariant measure of the so called Glauber dynamics for fixed 8. The
Glauber dynamics is some special kind of stochastic dynamics. And the neural network dynamics
(1.2) is the limiting case of the Glauber dynamics for f — co. So the idea is to study the Gibbs
measure for fixed # and then make some conclusions about its behavior as 8 — oc.

The key role in studies of the Gibbs measure plays the free energy

In(B) = log Zy,

~3N
because the most important characteristics of the Gibbs measure can be obtained as derivatives
of the free energy with respect to the different parameters.

Consider the Hopfield model with additional parameters 7,e¢ which correspond some addi-
tional terms (fields) in the energy function:

N N N
1
H(G’) = — Z JijO'Z'O'j + 72551)01‘ +<€Zhi0i, Jij = ﬁ Zfz(ﬂ)fj(m
)

i,j=1 i

with h;-1.1.d. normal variables.

This model for the case p = const was introduced initially by Pastur and Figotin [PF] as
an exactly solvable model of spin glasses. They have shown that the free energy of the Hopfield
model with the finite number of patterns in the limit NV — oo coincides with that for the Curie-
Weiss model. This result means, in particular, that the Gibbs measure for the finite 8 in the
limit N — oo is concentrated on some spheres around the patterns £(*) and the radius of these
spheres tends to zero, as § — oc.

Similar result was obtained by Koch and Piasko [KP] in the case as p ~ log N when N — oo.
And finally in the work [ST1] this result was generalized on the case when p, N — oo, p/N — 0.

The Hopfield model with extensively many patterns (p, N — oo, p/N — «a) was widely
discussed in the physical literature. By using so called replica calculations, which are not
rigorous from mathematical point of view but sometimes very efficient, a lot of results on the
Hopfield model were found. But most of them only wait for their mathematical proof. Let us
discuss briefly this method and results.

2.1 Replica trick

The replica trick was proposed initially by Parisi to study the free energy of the other very
popular model of spin glasses - the Sherrington -Kirkpatrick model (see [MPV] and references
therein). The method is based on a simple observation that

d
Elog Zy = lim —EZ!
OB AN = MG AT AN
So the idea is to find for n € N

EZN = exp{N(¢(n) + o(1))}



Then we construct the analytical function: ¢({) — ¢(n)

and find ¢’'(0). Then lim fy =
¢=n N—oo

1
—E(ﬁ'(O). These scheme for the Hopfield model was realized by Amit, Gutfreund and Sompolin-

sky [AGS]. They found that there exists some a.(3) such that for & < a.(8) the order parameter
of the problem (so called Edwards-Anderson order parameter)

N
gv=N"" Z<0i>2a (2.1)
i=1

possess the self averaging property (his variance vanishes as N — oo) and his limiting mean
value is the solution of so-called replica symmetric equations:

m” = \/ﬂ e % /2E{§”tanh5 \/ozrz—i—z m” + h")EY)}
q= / \;l;_ﬂe_z /QE{tanhQﬁ(\/arz—i—;(m” + h")¢E) }- (2:2)
q
r=——
(1-pB(1-4q)?
where
g= lim qny, m”= lim mY, r= lim ry,
N—o0

N%oo N—oo (23)
mVN = N_l Zi:l fz < i)a N = ZZ:S+1(m1]}V)2'

And the mean value of the free energy has the limit

fo mm{aJrZ 0‘5%—(1)

m 7ms 7r7q

By
25 [1““ -0 -0~ it +

1 o7 v
-3 \/_ *12 B{In[2 cosh B( \/JHZm +h)ENE. (2.4)

It is easy to check that equations (2.2) can be obtained as the extremum conditions of the for
the Lh.s. of (2.4).

And for a > a.(f) the Edward-Anderson order parameter is a random variable even in the
limit N — oo and its distribution is a solution of some rather complicated nonlinear partial
differential equation of the second order. The most important for the neural networks dynamics
result here is that for a < a.(8) the Gibbs measure is concentrated around the patterns &(#).
And it was shown that a.(5) — 0.138... as  — oo.

Till now there are not so many rigorous results for the Hopfield model with extensively many
patterns (p, N — oo, p/N — «). Self averaging property of the free energy, i.e. that the variance
of the free energy vanishes as N — oc

lim E{(fN — EfN)Q} =0
N—o0
was proven in [ST1]. This result was generalized by Bovier et al [BGP] who proved the large

deviation type bounds for (fy — Efn).

The most interesting rigorous results on the Hopfield model of spin glass (see [PST1], [PST2],
[BG], [T1] ) were obtained by using some version of the cavity method, which we are going to
discuss now.



2.2 Cavity method

In the spin glass theory this method is used mainly to study the replica symmetric field (for

a < a.(B)).
Recall the simple identity

N
(0:) = (tanh B> Jijo; + ) (2.5)
J#4
valid for the Ising model (o; = 1) with any interaction J; ;.

The mean field approximation is based on the assumption that the thermodynamic correla-
tions between spins vanish in the macroscopic limit

[(oio) — (oi)(oj)| = 0, N — oo. (2.6)
Then if J; j; — 0, as N — oo, we can replace (2.5) by the relation

N
(05) = tanh B Jij{oj) + eh1) + o(1). (2.7)
J#i

that can be regarded as a system of equations for the "local magnetization” (o;) and leads to
the corresponding self consistent equations for the order parameters of the model.

The rigorous version of the cavity method for the spin glass theory was proposed first in
[PS], [S] and the adopted to the Hopfield model in [PST1], [PST2]. It was shown here that
vanishing of correlations is equivalent to the self-averaging property of the Edwards-Anderson
order parameter

E{(qy — E{qn})?} =0, N — oo, (2.8)

and if for some «, 3, ¢, t the parameter ¢y is s.a., then of (2.7) is valid

N
(o1) = tanhﬁ(z Jij{oj)o + €h1) + 11N, Er%’N — 0. (2.9)
i=2
Here (...)o is the Gibbs measure, corresponding to the # (o) . From the last relation it is

01=0
straightforward to derive the replica symmetric equations (2.2) for the order parameters.

Thus, the key point of the cavity method is the proof of some analog of (2.6). As soon as
we establish (2.6) for some model, then we can derive some kind of self-consistent equations.

There are a few works, where (2.6) is obtained for the Hopfield model and then equations
(2.2) are derived (see, e.g., [BG] and [T1]). But unfortunately all of them deal with o << 1, so
they cannot be used for the purposes of the neural networks dynamics.

3 The Gardner problem

Now let us come back to the neural networks dynamics (1.2) and recall that the main problem
here was to introduce an interaction {Ji]’}zj‘szl (not necessary symmetric) in such a way that
some chosen vectors {£(#) }Zzl (patterns) are the fixed points of the dynamics (1.2). The choice

of matrix {J;; }ijzl depends on the concrete model, but one can see easily that multiplication
of all coeflicients in the same line {Jij}évzl by some positive constant )\; does not change the

dynamics (1.2). So it is natural to consider the matrices whose lines satisfies some kind of



normalization conditions. For most popular models of neural networks dynamics (e.g. for the
Hopfield model) these conditions have the form

N
Y J,=NR (i=1,...,N), (3.1)
=L
where R is some fixed number which could be taken equal to 1.

Tt is obvious also that if £€(#) are the fixed points of (1.2), then the interactions matrix {J;;}
satisfies also conditions

N
e ST U >0 (i=1,...N), (u=1,....p). (3.2)
=15

Sometimes condition (3.2) is not sufficient to have & () as the end points of the dynamics. To
have some ”basin of attraction” (that is some neighborhood of £(*), starting from which we for
sure arrive in & (“)) one should introduce some positive parameter k£ and impose the conditions:

N
e ST U sk (i=1,...,N), (n=1,...,p). (3.3)
Jj=1,g#1

Gardner (see [G]) was the first who solved a kind of inverse problem.

Problem 2. For which o = & the interaction {J;;}, satisfying (3.1) and (3.3) exists? What
is the ratio of the total Lebesque measure of the interactions satisfying (3.3) and (3.1) to the
measure of all interactions, satisfying (3.1) (she called this quantity the typical fractional volume
of the interactions)?

Since all conditions (3.1) and (3.3) are factorized with respect to 7, this problem after a
simple transformation should be replaced by the following. For the system of p ~ aN i.i.d.
random patterns {£(#) }ZZI with i.i.d. fg”) (1=1,...,N) assuming values +1 with probability

%, consider

O p(k) = S| ! /

D
dJ T ov—"12eW, J) — k), 3.4
JT)n #Hl ( ( ) — k) (3.4)

(0(x) is the Heaviside-function), |Sy/| is the Lebesgue measure of N-dimensional sphere of radius
N1/2_ Then, the question of interest is the behaviour of % log Oy (k) in the limit N,p — oo,
£ —a

This problem has a very nice geometrical interpretation. For very large integer N consider
the N-dimensional sphere Sy of radius N/2 centered in the origin and p = aN independent
random half spaces II,, (= 1,...p). Let I, = {J € RN : N~1/2(¢W) J) > k}, where £ are

i.i.d. random vectors with i.i.d. Bernulli components fj(-” ) and k is the distance from I1, to the
origin. The problem is to find the maximum value of « such that the volume of the intersection

of Sy with NII, is not "too small” comparing with |Sy|, i.e. their ratio is of the order e V¢
e\ N/2
with some bounded C. Let us remark here, that since |Sy| ~ 71/2 (7) as N — oo, it is
~NC

natural to expect that the "normal behavior” of our ratio is just e , and so the words "too
small” mean that the ratio tends to zero more fast than e~V¢ with any positive C.

Gardner [G] had solved this problem by using replica trick, described in the previous section.
As it was mentioned above this method is far from being rigorous from mathematical point of

10



view, but it plays very important role in the physical literature and gives results which usually
are correct. Using this method Gardner has shown that for any a < a.(k), where

ac(k) = w% /j(u +k)?e " du) (3.5)

we have so-called replica-symmetric solution of the problem. This means first of all that, if we
define the Edward-Anderson order parameter as

v =N ()b, (3.6)

with (...)e being the uniform distribution on the intersection of Sy with NII,, then gx possess
the self-averaging property (2.8) and its limiting mean value can be found as a solution of the

replica symmetric equation
u\/q+k 2
qg=a(l —q)FE [H<7>] 3.7
(1-q) { N (37)

where H(z) = %ﬂ [r e~"’/2dt and u is a Gaussian normal random variable. Besides, there

exists

lim N7'E{logOn,(k)} = Fla, k) =

N.p—oo,p/N—a
_ . u\/q+k 1 ¢ 1
_q:(grélqngl [aE{logH( m>}+21_q+2log(l q)|-. (3.8)

It is easy to check that equation (3.7) is just the minimum condition for the function in the right

hand side of (3.8). For o > (k)
1
Nlog Onp(k) = —oc0, as N — oo.

1
It is interesting to observe, that a.(0) = 3 (cf with the Hopfield model, where a, = 0.138...).

Let us remark that, according to the results of Gardner, for this model there is no field
of parameters here with so called broken replica symmetric solution, so there is a hope, that
differently from the Hopfield model the Gardner model could be studied completely (i.e. in the
whole field of parameters) by using the cavity method described in the previous section.

3.1 Rigorous results for the Gardner problem

The first rigorous result for the Gardner problem with Gaussian £ was obtained by Talagrand
[T2]. He proved large deviation type bounds for the fluctuations of log © y (k).

Complete rigorous solution for the Gardner problem was obtained in [ST2] (see also [ST3]),
where the Gardner formulas (3.8) (3.7) for the free energy and the Edwards-Anderson order
parameter were proved. To this end we use a version of the cavity method, but the problem is
that we are not able to produce the equations for the order parameter in the case, when the
“randomness” is not included in the Hamiltonian, but is contained in the form of the integration
domain. That is why we used a rather common trick: substitute #-functions by some smooth
functions which depend on the small parameter ¢ and tend, as € — 0, to -function. We choose
for these purposes H(ze 1/2), where H is the erf-function, but the particular form of these
smoothing functions is not very important for us. The most important fact is, that they are not
zero in any point and so, taking their logarithms, we can treat them as a part of our Hamiltonian.
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So we introduce the intermediate Hamiltonian

P — (¢ JYN-1/2
Hnp(J, k h,z,€) = — ZlogH (k (€ \}g) ) + %(J,J), (3.9)
pn=1

The partition function for this Hamiltonian is
Zny(k, z,e) = |Sn|t /dJeXp{—’Hg(J,k,z,e)}

. |5N|—1/dJHH< 5('?/5) 1/2) exp{—2(J,J)/2}. (3.10)

We denote also by (...) the corresponding Gibbs averaging and

1
Inplk,z.€) = N]og Znp(k,z,€).

One more difference of this model from the model (3.4) is that we introduce an additional
parameter z > 0 to replace the integration over the sphere (J,J) = N in (3.4) by the integration
in the whole space R in (3.10). It is proven in [ST2] that if we find the thermodynamic limit

1 / { ,p( 7276)} (a’ ’Z’ )

F(a,k,z* 6)+E—I§1>151{F(ak26)+;},

then

*

li N1E{ ] 1/ d — k — Fla. k. z
N {OgUN J T J exp{—H(J, ,0,6)} (. k2% e) + 5

El

We call the model (3.9)-(3.10) by the modified Gardner model. The free energy of this model
can be found using the following theorem proven in [ST2]:

Theorem 4. For a < 2, ¢ small enough, and z < e~'/3, there exists

lim E{fnp(k,z,€)} = F(o, k, z,€),

N,p—oo,any—a
. u/q+k
F = EllogH | —————
() =y i, a5 { o <\/+T)}

1 ¢
+§r + —log(R q) — —R:|

where u is a normal random variable.

As it was mentioned above, the proof of Theorem 4 is based on the the application of the
cavity method to the Gardner problem. The key point of this application is the proof of the
vanishing of the thermodynamic correlations between J; and J; in the limit N — oo (cf (2.6)):

E{((Ji — (N (J; — (Jj)))Q} —0, as N — oo. (3.11)
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which follows from the Brascamp-Lieb [BL] inequalities, according to which for any integer n

and any x € RV
. 2n
(J.%) DEn-1) (x2\"
<<m> >fm<N—n> | (312)

It is interesting to remark that the Brascamp-Lieb inequalities follow from the classical geomet-
rical theorem:

Theorem of Brunn-Minkowski
Let M C RN be some convex set. Consider the family of hyper planes L(t) = {x € RN (z,e) =
tV/N}. Let A(t) = M N L(t). Consider R(t) = [mesA(t)]'/N. Then

d’R(t)
<0
2 —
and d2d}f2(t) =0 fort € [t),ty] if and only if all the sets A(t) for t € [t),t] are homothetic to each
other.

After the proof of Theorem 4 the next step is the limiting transition ¢ — 0, i.e. the proof
that the product of aN @-functions in (3.4) can be replaced by the product of H(%) with the
small difference, when ¢ is small enough. Despite expectations, it is the most difficult step from
the technical point of view. It is rather simple to prove, that the expression (3.8) is an upper
bound or log © y, p(k). But the estimate from below is much more complicated. The problem is
that to estimate the difference between the free energies corresponding to two Hamiltonians we,
as a rule, need to have them defined in the common configuration space, or, at least, we need
to know some a priori bounds for some Gibbs averages. In the case of the Gardner problem we
do not posses this information. This leads to rather serious technical problems.

The final result has the form:

Theorem 5. For any o < a(k) there exists

lim E{N '1ogOny,(k)} = lim max F(a, k,z,¢) = F(a, k),

N.p—oo,p/N—a e—0 2>0

where F(a, k) is the Gardner expression.
For a > ac(k) E{N 1'logO®n,(k)} = —oc, as N — cc.

It is interesting to mention one more problem which is very similar to the Gardner problem. It
is so-called the Gardner-Derrida problem [DG] in which we seek the matrix {Jz‘j}%:p satisfying
conditions (3.2) or (3.3) but assuming values J;; = 1. The geometrical interpretation here
is that we are interested in the measure of the intersection of our random half spaces II,, with
a discrete cube Xy = [—1,1]¥. This problem was also solved by the replica trick (see [DG])
and similarly to the Gardner problem it was shown that the replica symmetric solution for this
problem is true in the whole field of parameters («, k). But till now the rigorous proof of these
results with some version of the cavity method was found only for o << 1 (see [T3], [T4]).
This difference with a case of the Gardner problem is explained by the fact that in the former
we can use the Brascamp-Lieb inequalities (3.12) to prove the vanishing of the thermodynamic
correlations (3.11), while in the case of the Gardner-Derrida model these inequalities are not
applicable.
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3.2 CLT for the free energy and order parameters

An important ingredient of the analysis of the free energy of the model (3.9) in [ST2] was the
proof of the fact that the variance of its order parameters (or the overlap parameters) disappears
in the thermodynamic limit. In the paper [ST4] we study the behaviour of fluctuations of the
overlap parameters, defined as

1
Rim (JO, Jm) (m=1,...n), (3.13)

m = ﬁ
where the upper indexes of the variables J mean that we consider n replicas of the Hamiltonian

(3.9) with the same random parameters {£() }Zzl, but different JO, ..., J™.
We introduce also the notations:

G=N'"2((Ry2) - q),

1 () +(m 1 - (1

Here J = J — (J) and (J) = ((J1),...(Jn)) € RN, where (...) is the Gibbs averaging with
respect to the Hamiltonian (3.9). (¢, R) is the solution of the system of equations:

e ()]
L a { <_J%if_ } (3.15)

(3.14)

q
+ )
(R—q)? R-—gq

with

These equations are equivalent to %—JZ =0 g—ﬁ = 0, for the function F(q, R;k, z,¢) which is
defined by the expression in the r.h.s. of (1.8) before taking maxg min,. It is proven in [ST2]
that if & < 2, ¢ < e*(a, k) and z < €'/3, the the system (3.15) has a unique solution.

To avoid additional technical difficulties in the proof of central limit theorems we assume
that {fZ(M )} are independent normal random variables.

The main result of the paper [ST2] is

Theorem 6. Consider any o < 2, k >0, e < e*(o, k) and z < e /3. Then for any integer n the
families of random variables {/ N (R, — E{R;m))}i<m<n, converges in distribution, as N,p —
00,p/N — a, to the Gaussian family of random variables {Ul,m}l<m§n; with the covariance
matrix:

E{Ul,mvl,m} = A*,
E{vymoim} = B* (m#m), (3.16)
E{vymopm} = C* (m,m/,[,l" are dif ferent).

In particular,

Np%i(ljrg/N%aE{<Tl2’2>} F(n — 1) *
_ r(2n—1)

1 E{(T2" ———— B~ 1
N,p%(xljgl/N%a {< 1 >} F((n — 1)) * (3 7)
I'2n—1

li E -2n — n
N,p—)og;f)l/N—)a {a™} (n—1) *’

where the constants A*, B*, C*, Ay, By, Cy depend on o, k, z, e and all odd moments for these
random variables tend to zero.
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Remark 2. In fact it follows from our proof that {T};,}i<m<n and {T;}i<, in some sense do

not depend on the random variables {fi“)}, i.e. if we consider P- some product of {T} m}i<m<n

and {Ti}1<n, then -
lim E{((P) — E(P))*} = 0. (3.18)

N,p—o0,p/N—a

Similar result for the free energy (3.9) of the modified Gardner model was obtained in [?].

Theorem 7. Consider the modified Gardner model with i.i.d. normal variables {65") bl Nop=1,p-

Then for any a < 2, k>0, ¢ < e*(a, k) and z < e~ 1/3 the random variable

UN,p = N1/2(fN,p — E{fnp})

converges in distribution, as N,p — oo,p/N — «, to a Gaussian random variable with zero
mean and the variance

) o fmen ()]
VZ=aFE{ (logH | ——X——r=— —aFE*SlogH | ——————
{(g < e+R—q 8 e+ R—q

Similar results for the fluctuations of the overlap parameters and of the free energy were
obtained in [T4] for the Gardner-Derrida model for small & and for the Sherrington-Kirkpatrick
model for the high temperature. We would like to mention also the work [GuT], where the fluctu-

ations of the overlap parameters for the Sherrington-Kirkpatrick model in the high temperature
region were studied by the method of characteristic functions.
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