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Abstract

Fluctuations of the free energy of the modified Gardner model for any a < a, are studied. It is
proved that they converge in distribution to a Gaussian random variable.

1 Introduction and Main Results

T3
In the paper ;S— 2] we introduced some modification of the famous Gardner model:

(e -1/2
H(J, k, z,¢€) ZlogH( (€ \/g) ) + %(J,J), p~aN (1.1) |H_N,p

where J,§(“) € RN, {fgu)}izl,---,N,uzl,---p are taken to be independent random variables with zero
mean and variance 1 and ¢, z, k are some positive parameters. The function H(z) is defined as

1 [
H(m)zﬁ e U124t (1.2)

N
The partition function of the Hamiltonian (II s

Znplk,2) = o) / 4 exp{—H(JT, k, 2,2)}. (1.3)

where oy is the Lebesgue measure of the N-dimensional sphere of radius N1/2,
We denote also by (...) the corresponding Gibbs averaging and

1
Inpk,z€) = N]ogZN’p(k,z,e). (1.4)

In FST?T2] we ysed this model to find the free energy of the initial Gardner model. This model was
introduced in ‘ﬁf?}] to study the typical volume of interactions between each pair of N Ising spins which
solve the problem of storing a giv N set of p random patterns {£&(#) }ftil‘ In this initial model the
partitian function has the form (cf I.3).

© k:al/
N,p() N (J.J)=

dJHe N2 ) — k), (1.5)
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vxﬁhﬁre Ehe function 0(zx) is zero in the negative semi-axis and 1 in the positive. By by using the model
(T7I)-(T.4) we prove mathematically the following result obtained by Gardner with a replica trick:
there exists a critical value of «

ae(k) = (\/%—W /:(u+ k)2e™% /2 du) ", (1.6)

such that for any a < a.(k) there exists the limit

ot WE{log Onp(k)} = min [aE {logH <%) }
Py Py 1 (1‘7)
+—— + —log(l — q)]
21—
Here u is a Gaussian random variable with zero mean and variance 1, and here and below we denote
by the symbol E{...} the averaging with respect to all random parameters of the problem and also
with respect to . And for g > a.(k) % log O (k) tends to minus infinity.

Comparing (I.3) with (h_S)T ¢ can see that we replace the functions 6(z) by H(—z/ V), to have
possibility to st ﬁl}’ R odel (CQE‘S)_by means of statistical mechanics of th hseytstems with random
interagtion (see ?T%) When ¢ — 0 1%—11(4 z/+/€) — 6(z), so the model (ﬁ_S)‘ls the limiting case

eﬁ—l’)&( A4). The other difference from (h_S)‘ls that we introduce an additional parameter z > 0 to
replace the integration over the sphere (J,J) = N in ( h_ff)_by the integration in the whole space RY
n ( .3%,_3'"

In [S-T2] we have proved that for any o < 2, k > 0, there exists ¢*(«, k) such that for any

£ < e*(a, k) and z < e='/3 there exists

lim E{fN,p(kazaE)} = F(aakaza6)7

N.p—oo,p/N—a
k
F(a,k,z,e) = max min [aE{logH(qu—i_>} (1.8) |t0.1

R>0 0<q<R Ve+R—gq
1 ¢ z
S 9 og(R—q) - 2R

where u is a Gaussian random variable with zer Jpean and variance 1.
Si ﬂgia results for small « were obtained in for the so-called Gardner-Derrida model. In the
paper [T4] the fluctuation of the order parameters for the Gardner-Derrida model were studied, but
only for small enough «. T

We would like to mention here also the work [Gu-T], where the fluctuations of the overlap parame-
ters and of the free energy for the Sherrington-Kirkpatrick model in the high temperature region were
studied by the m tr}god of characteristic functions. .

In the paper [S-T4] we study the fluctuations of the order parameters of the model (Filf_l’)LEfor all
a<2,k>0e<e*(a,k)and z < e~1/3_ In particular, we consider the family of the order parameters

Ry = %(JU),J(m)), (l,m=1,...n), (1.9) [R_Im
_N
where the upper indexes of the variables J mean that we consider n replicas of the Hamiltonian (Fil—l’)LE
with the same random parameters {& () }ﬁzl, but different J, ..., J™ . We have proved that if we
fix n and study the limit N,p — oo, then the family of the random variables u; ,,, = N1/2(Rl’m —q)
(I # m) converges in distribution to the family of Gaussian random variables. Here and below we
denote by (g, R) the unique solution of the system of equations

oF oF

7o (1.10)



£0.1

for the function F(q, R; k, 2z ﬁ:; which is defined by the expression in the r.h.s. of (I[.8) befoee taking
maxp ming. It is proven in [S-T2] that if < 2, ¢ < e*(a, k) and z < £'/3, the the system (ﬁ—?fa'}_has
a unique solution.

13 15
This work is based on the results of fSTQ], and FS?T4] The main result of the paper is the following
theorem:

H_{N,
Theorem 1. Consider the model (77 ]-{ 54) with Gaussian independent {ffu)}izl,...,N,u:L___,p with zero
mean and variance 1. Then for any a < 2, k > 0, ¢ < e*(a, k) and z < e~ Y3, Then the random
variable

UN,p = N1/2(fN,p — E{fnp}) (1.11)

converges in distribution, as N,p — oo,p/N — «, to a Gaussian random variable with zero mean and
the variance

Bie)) e e (2475

V2 =aFE<{ (logH | ———= —aFB*JlogH | ———— 1.12

{ < ® <m SU\VETE ¢ 112)
hm:1

Remark. In fact Theorem tI can be proved for any independent {fZ(M ) Yi=1,..,N,u=1,...p With zero mean

and variance 1 under condition E{|§§” ) |1} < C. We use the Gaussian random variable to integrate by

parts, i.e. to use the formula
i ()} = 2{o ()} (113

valid for any smooth function ¢(z) which grouth like polynomial at infinity. But in all our consider-

ations we have ¢(z) = &]:@N_I/Q), where ¢ is some smooth independent of N function. So, if fz(“) is
nongaussian, instead of (T.T3) one can use the formula

B{e§ (N) ) = N 2B {§ (9ON2) ) 4 B { CRNE (¢(§§’”)§§“>N—1/2)}
(1.14)

where |C(§§”))| < 1. Since the second term in the r.h.s. of (Hl)ﬁ) is of order O(N~1) while the first
one is O(N -1/ 2) it is easy to believe that the terms the second type will give a smaller contribution
than the terms of the first type. But to make corresponding bounds rigorously we need to do some
standard but rather tedious work. That is why in order to avoid additional technical difficulties in

thm: 1
Theorem [I"we assume that {fZ(M )} are independent Gaussian random variables.

thm:1
2  Proof of Theorem ’1—

thm:1
For the proof of Theorem II we need some apriory estimates for the fluctuation of the free energy.
Namely, we need the bound
B{jox,|™} < T(m)C™. (2.1)

We remark that here and below we use C' to denote some constant whose value is not important for
us, but which is in‘(riependent of N,p. This value can be different in different formulas.
The bound (ET) one can be obtained by using the lemma, proven in [S-T4].

Lemma 1. Let u € R™ be a Gaussian random vector with normally distributed independent compo-
nents {u;};*, and f(x) be some function defined in R™. If there exist Ay and so > 0 such that f(x)
satisfies the conditions:

P(A) = Prob{|Vf(u)|? > A} < e~ ¢=40) (vA > A) (2.2)

E{etol} < e%0B, (2.3)

ibp



Then for s < 1 780 we have
B{e VMBI < 2405 (1 4 (Ag + O )PP Oor2), (24) [p1.4

Using this lemma for u = (5(1),...,5(1’)), f(u) = Nfn, and Ag = Nag, B = Nb (ap,b some
N-independent constants) and s = N ~1/2_ one can get easily that

E{coshvn,} <C
which implies (B:1). a
Hence, we need only to check (E_ZT and (E 3) for f(u) =Nfn,p.

Let us write 1 1
Vi@ = 5 D_Tidu? < 5 D (RN ),
7 M

where we denote A, = A((k — S,)e~/?) with

Az) = —\/T_ﬂﬂlogH(m)
and here and below ]
Sﬂ = W(J,g(“)) (25) ti_R
It is easy to see that
A2 < Cy — CylogH((k — S,)e™'/?), (2.6) [int

Let us use a bound valid for any function ¢(J) and any Gibbs averaging (.. .)o:

(p(1)e? D))

—W < —{é(J))o- (2.7)

If we denote by (...)o the Gibbs averaging with respect to the Hamiltonian Hy = z(J, J), we get
1
NZM,%) < O — CyllogH((k — 8,)e2))o < C1 + C4{(Su)%)o < C1 + WZ(g(u)’g(u))
I

T3
Besides, it was proven in ;S— I'2] that there exist constants My and mg such that for any M > M,
Prob{((J,J)) > MN} < ¢~ Nmo(M=Mo) (2.8)

1.3
Using this boun(li %nd the above inequality for + o (A2), it is easy to obtain the inequality (5_27
To obtain (E.Si let us observe, that since log H((k S,)e1) <0, Nfn, < —Nlogz. So we need
only to obtain a bound from below. By the Jensen inequality

(o] #ﬁllog H((k - su)e—l/z)}>0 > exp { éaog H((k - S0/
> exp{ - 0< fj(su)2> } > exp{ - Cz ! zpj(£<ﬂ>,£<ﬂ>)}

p=1 0 p=1

1.3
This inequality implies (EB)aior small enough s.



To prove Theorem T we use the method, proposed initially in PEP—S] to prove the self-averaging
property of the free energy of the Sherrington-Kirkpatrick model. We denote by E, the averaging

with respect to 5(1), 3 ) (Eo means no averaging at all) and write
P
onp=N"2Y"Ly, L= Ey 1{log Znp} — Ei{log Znp}- (2.9)
(=1
So
P
E{vR,}=N"2 3" E{L,...L,} (2.10)
1y lm=1

Consider the term E{Ly, ... L, }. Let the minimal index is £;. One can see easily, that if no other
index coincides with Z;, then
E{Ly, ... Ly, } = 0.

Let X/, be the sum of the terms in which two indexes are equal to £ and all the rest indexes £; > /,

and Zgln be the sum of the terms which are included in ¥, and have just / indexes equal to £. Than,
since for [ > 3

p
Egznz(m—l)...(m—l—l—l)N*m/Q Z E{Eg{Lé}L@l...Lgml}

L1 yecesln 1 >0

=(m-1)...(m—1+ 1)N”2E{Ez{Li} <N1/2 > Lj)ml}

Jj>t

2(m—1)
< CN—Z/QEl/Q{Lgl}E{ <N—1/2 > Lj> } < C'N7U2(2.11)

p>j>L

Here we have used the bound (H), which implies
2(m—1) 2(m—1)
E{ <N1/2 > Lj> } = E{ <N1/2(Eg{log Znyp} — E{log ZN,,,})) }
p>j>L

2(m—1)
< E{ <N_1/2(10g Zn,p — E{log ZN,p})) } <C (2.12)

Besides, we use a simple observation that

Z Z
Ly :Eg_l{log (;)V”’ }—Eg{logz Np } (2.13)
Z N,p—1

N,p—1

where Z( ) _, is the partition function of the Hamlltonlan I I Fin which log H((k—N~12(¢9 . J))/\/2)

is replaced by 0 and so it is independent of f . Now one can get easily, that
E{L}} <C.

1.2
Thus, we derive from (B‘H) that
St = Sy + O(N /), (2.14)

Let us find E( ) . To this end we need to compute E,{L?}. We use the method developed in )S r4].
Let us cons1der a standard Gaussian variable « and introduce the function

1

(G ) —
G5 w) VA-t)(R—q+e

)/ 22 /2(R—g+e)(1-t) ;7 G(V1S +u\/q(1 — t) + z)dz, (2.15)

5

tl1.1

t1.2

t1.3

tl.4

t1.5



where

G(S) = H(k\;g5> (2.16)

R
and (g,r) are the unique solution of the system (eI 107

We have G(V(S,u) = G(S) and

GO(S,u) = e PR=0t) G (u, Jq + z)da

sl

independent of S.
We remark, that definition ET5 becomes more natural, if we introduce it through the Fourier
transform G(\) of G(S):

GW(S,u) = \/%_ﬂ/é(x) exp{ —¢A<S\/i+u\/m> - %2(1 —#)(R— q+6)}d>\
\/%/G F(S,u,t,\)dA,

2
F(S,u,t,\) = exp{ —M(S\/Z+u\/q(l —t)) — %(1 —t)(R — q+6)} (2.17)

Denote
Lo(t) = 1og(GV(Sp, )
N
where symbol (...)_y means the Gibbs averaging, corresponding to the Hamiltonian (IIi in which
Z
log H((k— N~1/2(£9, J))/\/€) is replaced by 0. It is evident that £,(1) = log (ZJ)V’p
Zy
71771

. Now, denoting

d d
Ey, the averaging with respect to £, and u, let us compute aEg*{ﬁg(t)} and %Eg*{ﬁﬁ(t)}.

Differentiating by ¢ and then integrating by parts (i.e. using that E{v¢(v)} = E{¢'(v)} for any
normal random variable v), we get

([ dN(—iXSet /% +du/q(1 — 1) 1/2 + X2(R — q))G(N) F (S, u, t, ,\))g}
([ AAG(A)VF (Se,u,t, 0)
1 ([ dM2(R — R11)F (S, u,t,\)) s
B §E£*{ ([ dAG(N)F(S,u, t,\) }
, U, T, —/
1y {(f dAdAa o (g — Rig) GG (O) F(S, u,t, N F(S, u, t, ) )
2 *

B0} = 35

([ dMdAaG(M)G ) F(S,u,t, N F(S,u,t /\))(_2}

1 {<<D§“)20<t><sé”,u)(Ru - R)u}
Ttk <G(t)(5§1),u)> '

1 ((@PDPEO (S, w)GO (S, u)(Raz — 4)))
_—EZ*{ (G(t)(S() )G(t)(S() ) }

2

1 1
= 3 (R0 = ROP )k | - 5B { (R = 0PIDY) 0 . 218) e

F
where the function F'(S,u,t,\) was defined in (b?ul r?) and we denote

(t) 1 d
D" = —=
Vtas



with Sél) being the I-th replica of Sy, and (...)_s;) being the Gibbs averaging with respect to the
Hamiltonian

“HE) = 5z09(S) + 9t St w) + 5 (T T),

g(il)) = _IOgH(k_Tgx)a g(ta Sfau) = _log Gt(sa u)
1.6

2 t
Now if take into account that |t_1dd?g(t, S,u)| < C, we get from (ETS)

(2.19)

d

et < om (- rt e o)
d

1/2 -2
P {<t ast

q(t, Sél) N

4
> } (2.20) |t1.7
(_e7t)

Proposition 1. For any n

_ d
re(J et s

14

2n
>( E )} < Ci(n) + Coln) (N1, T)", (2.21)
0,

This proposition is proven i ES‘T but since the proof is not complicated, in order to have
self-consistent proof %@eorem ?Iierepeat it here.
Proof of Proposition
One of the most important feature of our Hamiltonian #(t), is that g(S) and g¢(¢, %%u) are concave
function with respect to S. It allows us to use the Brascamp-Lieb inequalities ( see [B-L]), according
to which for any smooth function f

(F = (D) < 94, (2.22) L3

Thus, using this inequality and the fact that |t*1%g(t, S,u)| < C, one can get easily that

2n d
) <ow{|r s
(—£,t) das,

2\ n
> . (2.23) |t1.8

_ d
<‘t 12 —g(t. 5" )
dS (_ezt)

)4

Besides, since g(t, S, u) is a concave function with a bounded second derivative, we have

2
‘tl/2 ot S8 u)| < Cr+ Cag(t, 51, ).

st

Thus,

<‘t—1/2 ng(t, Sél) )
stV

2
> <0+ 02<g(t, Sé”,u)>
(—f,t) (_e7t)

< Gy + Colg(t, S, w)) g < O + CHISVP)_y, (2.24) [1.9

en_b
where we used (

t1.9 ) . . 5_12
Now, tT ing the ntl} power of the r.h.s. (b 24) and averaging with respect &,, we obtain (2.21).

Using ( ) and ( one can write

Ep{Lo(1)} = En{Lo(0)} + AL (2.25)



with
(1) ! 1/2
201 < [Cam{m - 2+ (o - )
0 (7Z7t)

Similarly we get
En{Li(1)?} = B {£0(0)2} + AP

with
1
INRIE= / E§12{<(Rn —R)*+ (Riz — q)2>
0

Observing, that
Ep{L(0)°} = BZ{L0)} = a7V,

1.5 1.1
we get now from (2.14) and (E_ZE}

5, = (m—-1)V

, N Yerim-2+ E{AZ i 1m o} + O(N3/2)

with
AE S |Aé1)|2 4 Af)

t1.3 _J
Now applying the Schwartz inequality and using the bound (bTZ) and BT& we have

E{AS¢1m—2} < E{AJ}E{Z},,,, o} <E{A}}C

} [Cl (n) + Cy(n)(N~1(J, J))”g] .

(2.26)

(2.27)

< C'max [EW {{(Ri1 = R4y} + BV {{(R12 — Q)2>(f€,t)}]

. . |15 - T5
But it was proven in [S-T4] (see Proposition 1 and Lemma 1 of FS?T4]) that

E{{((Ri1 = R)*) i} SCON7', E{((Ri2— @)Yt} SCN!

t1.1
Hence, (bZ(i and the above estimates imply

m—1V23a!
N )

, N Sep1me2 + O(N32)

Now, taking the sum with respect to £ and observing that
Stt1m-2 — Segn_o| < O(N12),

we get finally

thm:1
Theorem [T Tollows.

E{v},} = (m - YV E{vjj >} + O(N~'/?)

(2.29)
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