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Abstract

The paper continues our paper [1]. We locate the domain in which the overlap parameters of
the Hopfield model assume their values with probability asymptotically close to 1. This allows
us to justify the Gaussian form of the probability distribution of the molecular (cavity) field of
non condensing patterns and to present in a somewhat different form the replica symmetric self
consistent equations for the order parameters of the Hopfield model.

1 Introduction

This paper is a continuation and an addition of the paper [1], that was devoted to the derivation of
a system of self consistent equations of the replica symmetric solution of the Hopfield model based
on the assumption that the fluctuations of the Edwards-Anderson order parameter vanish in the
thermodynamic limit. The model is defined by the Hamiltonian

1 N N
H = _E Z Iij(Ti(Tj-l-EZhiO'i, (1.1)
ij—1 i—1
where
1 p
L= S, (12
N:

¢ (i=1,..N, p=1,.,p) are independent random variables assuming values 1 with probability %
and h; are i.i.d. Gaussian random variables with zero mean and the unit variance. Random vectors
g = {¢ N ., pn=1,..p are known as patterns or modes of interaction.

The model was introduced in [2] for a finite (N-independent) number of patterns p in the spin glass
(thermodynamic) context and in [3] in the neural networks (dynamic) context. Subsequent physical
studies of the model showed that properties of the model in the case of macroscopic number of patterns

p— oo, N = o0, %—>a>0, (1.3)
are much more interesting and diverse but also much more hard to study. We refer the reader to
books [4],[5] for physical results obtained by the widely accepted in the theoretical physics replica
method. Interesting rigorous results on the model were recently obtained by A.Bovier et al. (see their
contributions to [6]) and by M.Talagrand [7].

Our approach to the rigorous study of the thermodynamics of the Hopfield model is based on the
analysis of the dependence of the order parameter of the model on the total number of spins N by
careful control of changes of the parameters induced by the addition of (N + 1)th spin. The method
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(that could be called the rigorous cavity method) was proposed in [8] for the Sherrington-Kirkpatrick
model, that can be viewed as & = oo limit of the model (1.1)-(1.3). However, the technical form of the
method used in [8] was rather involved. A considerable simpler version of the method was proposed
in [10]. In [1] we applied the latter version to the model (1.1)-(1.3).

To explain the subject of this paper let us recall the simple identity

N
(o1) = (tanhﬁ(z Lijo; + €hy)) (1.4)
j=2
valid for the Ising model with any interaction I;; (here and below the symbol (...) denotes the Gibbs
expectation). The mean field approximation is based on the assumption that the thermodynamic
correlations between spins vanish in the macroscopic limit

{oi0j) — (oi)(o;)] = 0, N — oc. (1.5)
This allows us to replace (1.4) by the relation
N
(1) = tanh B> Lij(oi) + eha). (1.6)
=2

that can be regarded as a system of equations for the local magnetization (o;) and leads to the
corresponding self consistent equations for the order parameters of the model.

The vanishing of thermodynamic correlations and validity of the mean field approximation has been
rigorously proven in various asymptotic regimes of translational invariant models (see e.g. [11],[12])
and in the Hopfield model with finite p [13]. One of the ways to facilitate the proof of this property
in the whole temperature regime is to add to the Hamiltonian a properly chosen external field. In
the translational invariant case one chooses the field that breaks the symmetry of an infinite system
and provides uniqueness of its state for all temperatures. In disordered systems where we often do
not know a ”"genuine” breaking symmetry field, the addition of the external field is at least a rather
convenient technical mean, playing the role of ”source” term and allowing one to write quantities of
interest in a convenient form by using the differentiation with respect to the field, the integration by
parts and similar technical tools.

In work [8], using some special vanishing as N — oo field it was shown that for the SK model [9]
the relation (1.5) is equivalent to the self averaging property of the Edwards-Anderson order parameter

gn

E{(qy — E{qn})?’} =0, N — oo, (1.7)
where N 2
gN = N ;(%) . (1-8)

Deriving (1.5) from (1.7) and studying the moments of the random variable (o), it was proved
that if (1.7) is true, then the following version of (1.6) is valid in distribution

N
(01) = tanh B> I1j(0;)0 + hy). (1.9)
i=2
Here and below the symbol (...)o denotes the Gibbs measure, corresponding to the Hamiltonian (1.1)
with o1 = 0.
This idea was developed in [10], where the infinitesimal field was replaced by an ordinary Gaussian
one, that, in particular, allowed us to derive on the basis of the stochastic Griffith lemma (see Lemma
3 below) an important relation, valid for almost all values of 5 and e

N
Zhi(ai — <Uz>) — 0, N — o0,

1
N =



in the Gibbs measure and probability. This relation simplifies considerably the method of [8] and leads
to a more natural proof of the equivalence of (1.7) and (1.9). The further development of this method
showed that (1.7) and (1.9) for the SK model are valid for a large region of parameters, including the
low temperatures [14].
Now let us recall, that in the case of the SK model the interaction in (1.1) have the form
1
I;; = \/—Njija

where {J;;}7;_; are independent ( modulo the symmetry condition J;; = Jj;) random variables with

zero mean and the variance J2. Since {(Uj)g}j-\f:2 do not depend on {J;; };-VZQ, the cavity field

1
\/—NZ‘]U(UJ')O (1.10)
in (1.9) will be the Gaussian random variable with zero mean and the variance

JQ
wy =530} (111)

if {Jij}] ;=1 are Gaussian. Thus (1.9) leads to the relation

e~ 2dy

Iy = B{(o1)5} = /’Uanh2 BTV ayu+ &Thl)ﬁdﬂ(hl) +0o(1) (@n = E{an}), (1.12)

provided the variance that depends on {J;; }ij:Q has the property
wy = J?Gy + Ry, E{R%}—0, N — cc. (1.13)

This relations follows from assumption (1.7) if one takes into account that the expectations E{qn},
E{wn} and the variances of the random order parameters gy and wy can be expressed via the first
derivatives with respect to ¢ and J of the Hamiltonians H (1.1) and H . Then, by using the

01=0
stochastic version of the Griffith’s lemma on the convergence of a sequence of convex functions (see

Lemma 3 below), we obtain (1.13) for almost all e, J with respect to the Lebesgue measure. Thus,
(1.12) and (1.13) lead to the self consistent equation known as the replica symmetric equation for the
order parameter § = limy_, G of the SK model.

In the more general case of the i.i.d. but not necessary Gaussian interactions {.J;;}7;_; we obtain
the asymptotically Gaussian form of the cavity field (1.10) by using the central limit theorem whose
applicability is guaranteed by the relation

N
E{N7*> (o;)5} =0, as N — o, (1.14)
=2
(because |(0;)] <1 and the r.h.s. is obviously O(N1)).
Consider now the Hopfield model (1.1)-(1.3). In this case the cavity field in (1.9) has the form

1 < M M 1 iv: M
Wy tl)Oa tl = = fl iy (115)
N 1=2

i.e. in the Hopfield model the role of {(0;)g (i = 2,...,N) of the SK model play (t/)o (un = 1,...,p).
As in the SK case they are independent of {¢{'} (1 = 1,...,p), but unlike the SK case (t}')o are not



bounded, because generally we have only the bound |(t5)o| < N/2 that is not sufficient to guarantee
the analog

P
E{N7?> (t} =0, N — o0 (1.16)
n=2
of (1.14).
The goal of this paper is to prove (1.16) and to discuss related facts that were used in [1], in

particular, the use of the stochastic analogue of the Griffith’s lemma on a sequence of random convex
functions.

2 The Model and the Main Results

Define H as a sum of two terms
H:Ho—l-Hl, (21)

where

Z Z glehoio; — el Z ’Y”t“+62h0“

;L s+1 Z,j 1 n= s+1 (22)
i = LU0 S S o, me Zv
v=114,j=1

s = [logl/2 N] is the number of the patterns which are expected to be condensed, J, h', e1, and &
are positive parameters, dy = s 2/3, ¢ is an independent random variable uniformly distributed in
the interval (1,2), variables v#, h; are independent Gaussian random variables with zero mean and
variance 1.

The Hamiltonian H contains the contribution of the non condensed patterns and the Hamiltonian
H, includes terms due to the condensed patterns. The random variables v*, h; play the role of
”symmetry breaking fields” (or rather the source terms because we need them for technical reasons)
and after thermodynamic limit N — oo one can send €1, — 0. The term in H; containing dy( is
necessary to single out the condensed patterns. It would be more naturally to have a finite number s
of these patterns (even the one would suffice), but we can only prove that singling out s = O(log'/? N)
patterns we shall have all the others "non condensed”.

The variable t# is just a convenient notation for the following linear combination of spins:

ETZ§NOZ pw=1,....p. (2.3)

We will use also notations:

mh = g5t TN =p T Y ()2 Un = N7V ()2, (2.4)
N=N"1YN (0:)2, TN = E{ry} ay = E{an}.

The main result of the paper is the lemma, which allows us to overcome one of the serious technical
difficulties, arising in the Hopfield model, if we try to generalize to it the methods proposed in [8] and
[14] for the SK model. This difficulty is connected to the fact, that the variables ¢*, which play here
the role of ”spins” of the SK model (cf.(1.14) and (1.16)), are unbounded.

Lemma 1 Consider the set

M {m (m,..,m).yr£131(1|m| 45N}
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where éy = s~ /3 = d}f. Let xpm(m) be the characteristic function of the set M

1,me M,
XM (m) :{

0, otherwise.
Then for any n > 0 there exists a quantity Cp independent of N such that
Prob{{xm(m)) < e FININ/4) > 1 — C, N~ (2.5)

Moreover, if we add to the Hamiltonian H of (2.1)-(2.2) any Hamiltonian H which is symmetric
with respect to the variables {&\'}>s, {€4 usss-{E8 uss and the free energy of the sum H + H
satisfies the large deviation bounds of the type

Prob{|f(H + H) — E{f(H + H)|(}| > e} < D,N",

then the estimate of the probability (2.5) is valid for Gibbs averages with respect to H + H.

Here and below the symbol E{...|¢} means the average with respect to all random variables of the
problem except (. The proof of Lemma 1 is given in the next section.

This lemma allows us to treat m” (v > s) as random variables satisfying inequalities

1/2

m”| < 4dY (2.6)

because the Gibbs measure of m" satisfying the opposite inequality decays exponentially with proba-
bility 1, as N — oo, and so those m” can add only exponentially small contributions in our estimates.
In particular, denoting by J the N x N matrix defined by (1.2) and using the bound

Prob{||7]| > (1 + v/a)? + d} < ¢ V*/°d"* coust (2.7)
proved in [15], we obtain
E{ Z )M} < 16dy E{ Z 1)} < 16dyE{||T||} = constdy — 0, N — oc. (2.8)
v=s+1 v=s+1

Thus, the Lh.s. of (1.16) is bounded by O(s=2/3) = O(log™'/3 N).
Another important corollary of Lemma 1 is the formula, analogous to the formula of integration
by parts for Gaussian variables.

Proposition 1 Let t|' be defined by (1.15). Then for any p1,...,pu, > S, pi 7 pj and any bounded
function Fy({o},{!}), ....Fi({o},{&!'}) which do not depend on &}

NERB{E it AN R (o} D) T R (o} ()} =

Ry +1 2.9
N2 B g (1t B R (o) AE) - Ry e+ Ry, Y
with
IRy| < d? - (2D max |Fy|... max |F}| - (2 + va)k.

The same relations are valid for any perturbed Hamiltonian H + H, if the perturbation H is
symmetrical with respect to &' in the sense of Lemma 1 and for any k, n

8’“1?

BV ((sem—sam o )2”)}_ Nk (2.10)

with the constant Cy, , independent of N. Here and below the symbol % means the formal derivative,
1

which can be obtained if we replace &' by a continuous variable.



To study the influence of the ”condensed” patterns we use

Lemma 2 Consider the ”approzimate” Hamiltonian of the form
K] N K] N N S
H%c) = Hy— J(1+dn¢) Y Y Eloi— Y 4"t —h' Y o+ J(1+ dnG) > () (211)
v=1

v=1 =1 =1 v=1

where Hy is defined by formula (2.2) and ¢ = (c',...,c°). Then the free energies of the initial
Hamiltonian H and the ”approximate” Hamiltonian H® satisfy the inequality,

const

0 < min B{f (H*(€)IC} ~ B{f(H)[C} < o (212
and for almost all J, h', €1, €
P N
TvEE{p ' Y ()i =Tx+o(l), gy=E{N 'Y (o)} =qn +o(1). (2.13)
n=s+1 =1

Here and everywhere below we use notation

HY = H%e.(C))
for the Hamiltonian H® computed at the point ¢, (¢) = (cL(¢),...,c$(¢)) which provides the minimum

"
value of the mean free energy E{f(H%(c!,...,c*))|C}, and the symbol {(...), for the respective Gibbs
average. Thus the symbols g}, 7} are the values of order parameters computed by means of this
Gibbs measure.

Remarks

1. Lemma 2 allows us to replace the Hamiltonian H by H?, which is linear with respect to the first s
patterns.

2. Since the Hamiltonian H? has the form

a J(1+<dN)N - v v\2
H* :H+f;(m _C*) )

it is easy to see, that it satisfies conditions of Lemma 1 and Proposition 1 for the perturbed Hamilto-
nians, and the estimates (2.9) is also valid for the (...), averages.

The proof of Lemma 2 is based on an important technical lemma which we call the stochastic
Griffith’s lemma

Lemma 3 Consider the sequence of convex random functions {fn(t)}oL, (fl(t) > 0) in the interval
(a,b). If functions fy are self averaging, i.e. uniformly in t

Tim B{(fa(t) = B{fa(t)})} =0,

and bounded (|E{fn(t)}| < C uniformly in n, t € (a,b)), then for almost all t

limy, 00 E{[f5,(t) — E{f5(t)}]?} =0, (2.14)

i.e. the derivatives f](t) are also self averaging ones for almost all t.
In addition, if we consider another sequence of convex functions {gn(t)}5, (gi > 0) which are
also self averaging uniformly in t

lim E{(gn(t) — E{gn(t)})*} =0

n—o0



and

Tim [E{fa(®)} — E{ga()}] = 0. (2.15)
uniformly in t, then for all t, which satisfy (2.14)
Tim |BA0} - BAG, 0} =0, T B{ld(t) — Blg'(O}?} = 0. (2.16)

We prove Lemma 3 in Appendix.
Lemmas 1,2 and Proposition 1 allow us to derive a somewhat different than in [1] variant of self
consistent equations for the Hopfield model.

Theorem 1 Consider the Hopfield model of the form (2.1)-(2.2). Set

Ay =E{(Np)™" Y ((t* = () (0i — (0:)))*}, (2.17)

pu>s,0>1

Then for almost all values of parameters J, h', €1, € a and 3 parameters the parameters Gy, Tn
satisfy the system of equations

Py = {ay +e1J26%(1 —qy)?}
=BT —an))?

gy =F {f dvexp(—y) 6)3)2(_7:%) tanh? ((arn (e1)) %0 + hlel +J >+ 6h1)} (2.18)
v=1

+O(AY?) +o(1),

+0(AY?) +o(1),

where
2.J Be?

1-BJ(1-7gy)

FN(El) = JQFN—F +6%,

and the parameters ¢ satisfy the equations

dv exp(— 2 5
¢ = E{ %(ﬂg) ¢ tanh B((arn (e1)) 20 + RiE} + Jyz::lc”fl” + 6h1)} + O(A}\{Q) + o(1).

Using Lemmas 1 and 2 and Proposition 1, one can prove Theorem 1 by the method proposed in
[1]. One of the main steps in the proof is given by the lemma which in fact is some version of relations
(1.7). To formulate this lemma we need some extra definitions.

Define the Hamiltonian ®(7), interpolating between systems of N — 1 and N spins

Jr &
B(1) = HO — =~ 5" gy, 2.19
(T) 1 \/ﬁﬂz:lgl 1 ( )
where
J P s N
Hf:H?—ﬁ S - I+ Cdn) YD o

N n=s+1 v=1 =2 (220)

JN(1+(d i y i v

WY el + TS Sy 5,

=2 v=1 v=2

It is easy to see, that if 7 = o1, then ®(7) coincides with H® up to the term hioy (l~z1 =h'€¢l +ehy +
1y, N “1241¢8) | which add only some constant to the Hamiltonian ®(7) and therefore does not
play an important role.



Consider also the corresponding partition function

Z(r) = Z e P (2.21)
02,4....ON
and define the relative free energy
(r) = n 240 (2.22)
u(t) =In . .
Z(0)
Lemma 4 The function u(t) can be represented in the form
~ & ~ _ \TA(BI)?
u(t) =BJT Y (Yo + BIT Y Elek + ((Un)o — o n) + Rn(7), (2.23)
v=s+1 \/]v pn=1

where (...); is the Gibbs averaging, corresponding to the Hamiltonian ®(7), Uy is defined by (2.4) and
the remainder Ry (T) can be estimated as

E{R%(7)} < const - Ay +o(1), N = oo (2.24)
The proof of Lemma 4 is given in [1] (see also [7]).

3 Proofs of Lemmas 1,2 and Proposition 1.

Proof of Lemma 1.
For given u < s and v > s+ 1 consider the set

A = {m = (m!, ., mP) : (1+dxC)|m#| < |m”| = 30y } . (3.1)

Its Gibbs measure is
a = (0(|m”| — (1 +dnQ)Im*| — 30N)), (3.2)

where () = (1 + signm).
Let us assume, that for any n we have proved the estimate

Prob{a"” < e_ﬁJNd?Vﬁ} >1-C/N~". (3.3)
Counsider the set

A=U Uy A =

3.4)
— 1 Py . i P V| _ (
{m (m*,..,mP): (1+dn(Q) I/?Sn;l|m | < Vrél?fl|m | 3(5N}.
Then it follows from (3.3) that the Gibbs measure (x_4(m)) of the set A satisfies the estimate
Prob{(x.a(m)) < s(p — s)e PIN/5 < e=FING/6)
>1—s(p—s)C'N ™ >1—C,_oN ("2,

when N is large enough. Then we use the inequality

(xm(m)) = Oemna(m)) + Ouaz(m)) < Ocalm)) + vz (m)- (3.5)
But

A= . in lmt| > v _ v

MNA={m: (1+ dNC)I/?SI?|m | > Jmax, |m”| — 30w, max, |m”| > 4dn} C 56

{m: (L dy¢)min fm#| > ) € {m: (1+dx¢)* 3 (m")” > s63).
- u<s



= (logN)Y/S

By using the definition (2.4) of m* and (2.7), we get that for any d > 0 (in our case d = EY (1+Va)?)
N

the probability of the event

{Zpgs(m) (1+\/_) +d}C{NZ1]JZJU'LU] (1+\/_) +CZ}C
{1711 > (1 + va)* + d}

is less than e~V*/?d*/?const (pecall that 7 is the matrix (1.2)). Therefore the probability to have the
last set in (3.6) nonempty is also less then e N*/*€ONSt  Thyg (3.5), (3.6) and (3.3) prove (2.5).

Now we are left to prove (3.3).

To this end we use the standard representation

exp{BIN((1 +dn¢) L 4 )y

(rpIN) 1+ dx Q) [ dodyexp(BIN G+ — T - L)y

and study

gov — 10Uyl — 2| = 20N) exp{BINEy (2, y) pdzdy

= , 3.8
' J exp{BINFn (2, y) }dzdy (3:8)
where F'y ,,,(z,y) is a random function defined by the formulae
22 y?
Py u(,9) = frvgun (S, Jy) — s = L
VaAeo ) = I T2 T = 56 T (3.9)
IN () = log Y exp{—fH,,(0;z,y),}

BJIN 5

with the Hamiltonian H,, ,(0;z,y) of the form

N
Hy(o;z,y)=—-NJ Z (m* )2 — NJ(1 + Cdy) Z (m*')? — Zhiai—
=1

] W# s <s
—elvNZ'yVm — VN Z’y mt — Nzm* — Nym”.
v'>s w<s

that is linear in m* and m”.
Then we use the inequality which follows from the Laplace method:

9

2
T =l = 200) exp {9 s+ 'y~ et = )ty
[ exp{BJN (mtz + m’y — W )}dmdy N (3.10)
(O(Im”| = (1 + dn¢)|mH| — 30n) — Nﬂ‘” [2@+dN )y,

Indeed, if |m”| — (1 4+ dn()|m*| — 30n < 0, this inequality is trivial.
If |m”| — (1 + dn¢)|mH| — 30 > 0, then the §-function in the r.h.s. of (3.10) is equal to 1 and the
ratio in the Lh.s. is equal to

2
fD exp{8JN(— ((1+d )C) w 5’ )}dxdy

S exp{BIN (= 5T — U4 Ydudy




where D = {(z,y) : |y| — |z| — 205y <0} and z* = (1 + dn{)mH, y* = m”. In our case (Jm”| — (1 +
dnC)|m#| — 36y > 0) and so (z*,y*) € D. According to the Laplace method, the last ratio in the
above formula can be estimated from above as follows

Jpexp{BJN (- 2<(1+d )o (y ;’ )}d:cd (@—12"2  (y—y)?
< JN - _
[ exp{BJN (- 2(( ) (y g )}d:c ¥ exp{f} mgX[ 21 + dnC) 2

+dnC)
o NBJIGY /2(2+dN )

Thus, we obtain that

a = f9(|y| — |.’L‘| - 2(5N) exp{ﬁJNFN’W(:v,y)}dwdy —

v [ exp{BJIN Fy . (z,y) }dzdy o,
% (o) xP{=BHyu (00,00} [ O(ly| — fa] — 20) ™V RT  dwdy
27T,6JN(1+CdN)_1/2 Z{o‘} e_BH(O') -

z2 2
S (o} XP{—BH 0 (050,0)}0(|m”| — (1 + dyC)m#| — 36y) [ /N eV a NG~ E) gy
27rﬁJN(1 +Cdn) 12T 4y e PHE) -
—NBJé2% /2(2+dn () — gtV — ¢ —NBJ&% /2(2+dNC)

So,
v <a/u/+e—NBJ5 /2(2+dNC) (311)

Now we apply the Laplace method to the integral in the r.h.s. of (3.8) (let us recall that evidently

|8%fN7u,,(m,y)|, |8%fN7u,,(m,y)| <1 and therefore Fy ,,(z,y) has bounded derivatives in the domain
of interest). We have

Jiyl=lz[>205 EXP{BINFN (2, y) ydzdy

al —

[ exp{BINFN . (x,y)}dzdy - (3.12)
exp{fJN[ max Fn,(z,y) — max Fn,,(z,y)]}.
[yl —|z|>20 5 Ty

We will show below that

dy o2

T, Fv (@) = max P (2,y) < —C—5 (3:.13)
JFrom this inequality, using (3.12) and the fact that 1 < { < 2, we get
al’ < e PINANIY /2, (3.14)

if N is large enough. This inequality together with (3.11) prove (3.3) and thus Lemma 1.

Now let us show (3.13). Denote by E,,{...} the average with respect to all random parameters of
the problem except v*, v¥ and { and rewrite Fiy ., (x,y) as

FN,W(%Q) = EuV{FN,/W(fan)} + RN,,W(m,y), RN,uu(fan) = FN,uu(way) - EuV{FN,uu(fan)}-

Then we have

Max|y|_|z|>26y FN,uv(T:y) — maxgy Fy uw(z,y) <

(3.15)
MaX|y|_|z|>25y Euw{FNnuw(z,y)} —maxy, y By {Fnuw(z,y)} + 2max, y |[Ry,uw(z,y)|}-

To proceed further, we use

10



Proposition 2 Let f(x,y) be a smooth function, satisfying the symmetry conditions

f(xay) :f(yam)a f(:v,y) :f(—fll',y)- (316)

Consider the function F(x,y) of the form

72 2
Fan=iey-srp-g @>0 (3.17)
Then 0152
max F(z,y) — ‘m‘rgrﬁ)E%F(m,y) > ik (3.18)

We prove this proposition in Appendix.
Let us remark that

\ylfﬁr;:?gﬁw EMV{FN,W(xa Y} — IE%X E;w{FN,;w (z,y)} <

gk £17”
+ 2| 7=+ ==
7#:7":0 N N

max E;w{FN,;w(xay)} — Inax EuV{FN,uu(may)}
ly|=|=|>20n A=Y =0 T,y

and use also the estimate
yH=y¥=0

Now we apply Proposition 2 to the function £, {Fy . (z,v)}

" 1—d
(|0l + 12 < T

Since v* and ¥ are Gaussian random variables, this estimate is valid with probability larger than
1 — e~ Nconstdy dy  Thus
. b

Cdyo%. (3.19)

\y|—I\r:i?§(26N Euu{FN,uu(fEa y)} — n%g,}x E/W{FN,/W (z,y)} <

 2dn(0% N dnCo3 (1 — Cdn) i = (P (3.20)
1+ Cdn 1+ (dn N N
with the same probability.
If also

d2
2max | R (2,)]} < ¢, (321)

then (3.15) and (3.20) imply (3.13). Thus, we obtain that the probability of (3.14) is bounded from
above by the sum of probabilities of (3.19) and (3.21).

Now we are faced with the problem of estimating the probability of (3.21). To this aim let us
remark, that since |%fN,,W|, |a%fN,W| < 1, all the extremal points of Fy ,,(z,y) are inside the
square {(z,y) : |z|,|y| < 1}. Besides, for any (z,y) from this square there exist 7,3, (|i|,|j] < M,
M = [4v/2dy?]) such that

I (259) = B{f (@, 9)IC = vy (57 47) = B{U v (37 401G+
(@, y) = g (G 7)) + B{f v (3 301CY = B{U N (2,9)[C} = (3.22)
fN,;w(MaM) E{fN,;w(Ma )|<}+R1+R2a

where

i j 2
|R1,2|§\/($—M) +(y—i) L d

11



Thus, for our goal it suffices to estimate the probability of the event
i j i j
sl ) = Bl (o iy < D (3.23)
because this inequality and (3.22) imply (3.21).

Since, according to the result [16], the probability of the last event for fixed (7, j) can be estimated
as

d2 _
Prob {|fN,W($k,yk) — E{fnuw(zr, yp)|C}H < TN} >1-D,N7",

and the number of these events is 4M?, the probability of inequality (3.21) is more than 1—-4M?D, N~ >
1 —C! N?=". On the other hand, since ", y* are Gaussian random variables, the probability of (3.19)
is more then 1 — e~V CONStdy  Therefore the inequalities (3.11)-(3.23) and the last conclusions prove
(3.3), that, as it was mentioned above, implies (2.5).

For the perturbed Hamiltonian the proof is the same.

Proof of Proposition 1
To simplify formulae we prove formula (2.9) in the case | = 1. The general case for this formula and
also its modification for the perturbed Hamiltonian can be proved similarly.

Let us introduce the vector § € R¥, § = (6y,...,0}), and define H(#) to be equal to the Hamiltonian
H? | if we substitute in the latter &}, ... &' by 6,&1", ..., 0%, Set

¢(61,...,0) = NF/2(¢h PR ({oh A D) i)

and consider

E{fy ... [y dby ... doget .. ¢t 52 39k¢(01 0} =
B{fy .o fy Or o dOpel € 0 (31,05 0k) — $(0,02 ... 0)) )}

Since ¢(0,65 . ..0;) does not depend on &, the second term in the Lh.s. of the last relation is zero
after averaging with respect to £/"'. Repeating this procedure k£ — 1 times more, we get

k
B[ [ dnet T 0 00} = B 50, 1),

Therefore

BYE et g1, 1) = B e g1 D) + Ry (¢) = 5.2
Nk/QE{WM“ lkol({U}a E Mt + By (8), '
where o
| Ry (9)] < N¥2E{maxig, 1o, <1 gogr—ag; 901 - 0)} + ... (3.25)

k+1
Nk/QE{maxlﬂl\,-.-,\ﬂklsl ae?...a?ek P(01-..6k)}

Now we should remark that since the Hamiltonian H¢ depends on &}’ via the expression
N-Y 2et oy (Jt +e19*), after differentiation with respect to &/ this expression will appear in several
places. Thus, we obtain

Rypy oy, < comst BNV (J#7] + ex ]y ])*
A+ ey ) - B IES ]+ by DIFL (o} {68 D D iz 45,
E{N"Y2(e (| + exlyl)
21+ el ) - G+ el D (o b A DD ey b

P4+
1esbk (3.26)
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with 57, . of the form

, 0 0
i . 1(#17 ’Nk)tM101_+ + k(ula ’Mk)t%kUl

Sm,m,uk - \/N 1 \/N
By using the inequalities |Sf¢1,...,;¢k| < k and then (2.6) and (2.7), we get the estimate
| Ryty o] < comst dy B{(((#1")? + et )((1°) + ey, ) - (%) + 3 )} =

constdy E{pF T ()2 2 ()2 +e2) () + 32 0 S (3:27)
constdy* B{(al|T|| + ae})*} = O(d)?).

Proposition 1 is proved.

Proof of Lemma 2
It is easy to see that for any ¢ € R?®

H%c)—H = J(L+dn)NV +2CdN)N Z(m” — )2

Then, on the basis of the Bogolyubov inequality

(1Y — H) iy < S (H) — P (H) < ~(HE — HD )y, (3.28)

we have for any ¢ € RS
HLECIN) S (o — ) ey < (@) — () < 2SI S ey (3.20)
1 v=1

Taking the minimum with respect to all ¢ and averaging with respect to all random parameters of the
problem, except (, we get

TS (3 ¥~ )2 o€} < Blomin ()G~ LI (G} <
~ s (3.30)
TS (3 m? — (m*)PIC).
v=1

where ¢ is a random minimum point of the function fy(H%(c)). Integrating by parts with respect to
the variables {7”}_,, it is easy to obtain that

S

Bl X 0n — m )} = Bl 3 ) <

v=1
BV g SO Y < G BT
v=1 v=1

Substituting this estimate in (3.30), we get

T B 0 — &) rolC) < Bfomin (@I}~ BLWDIC < const (5)'72. (3.1

v=1

Now to prove Lemma 2 we are left to prove that

|E{min fx (H*(c))|C} — min E{fy (H"(c))|C}| = o(1), N — oo (3.32)
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Since for fixed N fy(H®(c)) and E{fn(H%(c))|C} tend evidently to infinity, as ¢ — oo, these
functions assume their minimal values at the finite extremal points. But the conditions of extremum
for these functions have the form ¢ = (m")pa(c) and ¢ = E{{m")ga(c)|¢} and since [m”| < 1 to
prove (3.32) it is enough to prove that

Prob{X} = Prob{ sup |fn(H%(c)) — E{fn(H"(c))|(}] > } =o(1). (3.33)

|CV‘S1 - lOgN

By using once more the fact that the derivatives of the functions fy(H%(c)) and E{fn(H%(c))|(}
with respect to ¢” are bounded, we obtain that

[ (H(e1)) = fn(H(e2)) < TS (ef = 5)H)'/?

and so, if | — 4| < (2k)~! (k = [slog N]), then

Js J
a — a < —< .
|[fv(H(e1)) = fn(H (e2))] < o < 2Tog N
Therefore
|Sl|1£1 [fv(H"(c)) — E{fN(H“(C))IC}l <
CV
sup [ (HO(EE, . 20) — B{fn(H ( ,---,—))lC}l
FABNFALS: koo k ko k
Thus,
Prob{X} < >  Prob{X;, .} (3.34)
1 seesdis
where ji,....js are integer numbers from the interval (—k, k) and X, __;, is the notation of the event
jl js jl
HY(—,...,=)—FE =
|fN( (]{2’ ak_)) {fN((k_a ))|<}|_10gN

According to [16], the probability of the last event can be estimated by D; N~ 'log? N. Thus, on the
basis of (3.34),

Prob{X} < DN 1(2k 4+ 1)* < Dy exp{slog(2k + 1) + 2loglog N — logN } =
D exp{ const [log N]*/?(loglog N) —log N} < N~ 1/2,

and we obtain (3.32), that joined with (3.31) proves (2.12).
Now let us prove relations (2.13). To this end we use Lemma 3. Using this lemma and (2.12), we
obtain

BE{(1 — q)|¢} = —B{ 2N |<} ~E{2yH) |<}+(>=5E{<1—qN>|<}+o<1)
BE{((U). — ary)|¢} = —B{2EI |0y = {afggl }+o(1) = BE{({U) — arn)[C} +o(1)

(o) |<}+Z/ ac(er(Q) =~ )y
2E{afN( )|<}+ o(1) = B{(UN) + 3" ((m")2)} + o()

p=1
(3.35)
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Remark also, that

> [ acte o) = —25- [ acnPI 0y — o L Bl o - I -

=1

2 B )]y — In(D] I+ o) = 2 [ acEPX I 4 ot
—E{Z m*)?)} + o(1)

This relations, joint to (3.35) prove (2.13).

4 Appendix

Proof of Proposition 2
Due to the symmetry of the problem we can restrict ourselves by the case when z and y are positive.
If £ >0,y > x+ 20 consider 2’ =y, y' = z. Then

F(a' ) = F(a,y) = f(u,7) ~ gy — 5~ @1)
—f(z,y) + ﬁ +4% = g(fid) (y° — x?) > 46° (1+d)
Proposition 2 is proved.
Proof of Lemma 3.
Denote
dy) = maxg<i<p B{[fn(t) = E{fa(®)}]?}, d¥) = max,<i<p B{{gn(t) — E{gn()}]2}.
di) = maxocico |E{fa(0)} = E{gn()}],  en = max{dy), di?, di? )],
Then, using the convexity of f,(t), we have
) - sy < D200 gy - Sl Z BUAO)
fultt en) = Blfnlt +ea)} 'y [PUEH ) = BUOY o ) “2)
En En n '
Denote also 5 . 5 .
R:{(t)E {fn( +5n2i_ {fn( )} —E{fé(t)}
and prove that R, (t) — 0 for almost all ¢. To this end we study
"y = [Pt 2RO ) [0t 2B )]

where F),(t) = f; E{fn(7)}dr and (a1, b;1) is some subinterval of (a,b). It is evident, that

b-l-bl

0< F(t) = E{f(t)} < 2(b—b1) " [B{fn(5)} — E{fu( -

Therefore if n is large enough to provide €, < b}”l, then, according to the Taylor formula, the r.h.s.
of (4.3) is of order O(g,). Thus, since R, (t) > 0, it follows from (4.3) that R;} () — 0 for almost all .

On the other hand, similarly to (4.2) we get that
_fn(t —en) — E{fu(t —en)} + fn(t) — E{fn(t)}

En En

fnt) = E{f(t)} = + R, (1)
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and Ry (t) = EUa@I=PUnltzen)} _ Bogr (1)) — 0 for almost all £. Then

En

B{I7(0) - B 0)) < 2E{(f"(t“") Pt e} }+

€n

E{(fn(t—en)—E{fn(t—en)}>2}+4E{ n(t) - E{fn } }+

En
+(R, (1))* + (R} (1)? < 8en + (R, (1)) + (R*( ))

for almost all £.
By the same way,

_ 2
E{[g. (t) — E{f.(t)}]*} < 2E { <9n(t+6n) E{fn(t+en)}> }+

€n

op { (2=l P el ) g {00 = PURONY ) 4 oo -

En En

2E{<gn(t+sn) —E{gn(t—l—en)}>2} +2E{<gn(t— en) — E{gn(t—en)}>2} .

€n €n

4E{<gn(t) — E{gn(t)}>2} ) (E{gn(t+en)} — E{fn(Hgn)})er

En En

, <E{gn(t —en)} — B{fult - en)}>2 T (E{gn(t)} - E{fn<t)}>2 N

En En

(R (1) + (RF (1)? < 16eq + (R (1)* + (R (1))

(4.4)
On the other hand,

E{lgy(t) — B{£,()}]} = E{lg,(t) — E{g,(t)}]*} + [E{g, ()} — B{fu(t)})".
Therefore (4.4) proves (2.15) and (2.16)
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