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Abstract

The paper is devoted to the rigorous proof of the universality conjecture of the random
matrix theory, according to which the limiting eigenvalue statistics of n x n random ma-
trices within spectral intervals of the order O(n™!) is determined by the type of matrices
(real symmetric, Hermitian or quaternion real) and by the density of states. We prove this
conjecture for a certain class of the Hermitian matrix ensembles that arose in the quantum
field theory and have the unitary invariant distribution defined by a certain function (the
potential in the quantum field theory) satisfying some regularity conditions.

Key words: random matrices, local asymptotic regime, universality conjecture, orthogonal
polynomial technique.

1 Introduction. Problem and results.

The random matrix theory (RMT) has been extensively developed and used in a number of areas
of theoretical and mathematical physics. In particular the theory provides quite satisfactory
description of fluctuations in spectra of complex quantum systems such as heavy nuclei, small
metallic particles, classically chaotic quantum models, etc. One of the important ingredients of
this description is the universality conjecture of the RMT according to which the local eigenvalue
statistics on n X n random matrices (probabilistic properties of their spectra within intervals of
the order of 1/n) do not depend on a particular ensemble in the limit n = oo and is completely
determined by the invariance group of the ensemble probability distribution. There are three
invariance groups (orthogonal, unitary and simplectic) and three respective classes of the random
matrix ensembles that model quantum systems possessing respective invariance under the time
reflection and the space rotations. The explicit form of the local eigenvalue statistics in the limit
n = oo for each of these classes was found in sixties by Wigner, Mehta, Dyson and others who
introduced and studied the explicitly solvable Gaussian and circular ensembles (see Ref.1 and
references therein).

In this paper we consider the technically simplest case of the unitary invariant ensembles.
Moreover we will study the class defined by the density

pn(M)dM = 7, exp{—nTrV (M)}dM (1.1)

where M is a n x n Hermitian matrix,

n
dM =[] dM;; [] dSM;rdRM;y,
j=1 Jj<k

is the ”Lebesgue” measure for Hermitian matrices, Z, is the normalization factor and V() is a
real valued function (see the Theorem below for explicit conditions).
The case V(\) = 2~ corresponds to the Gaussian unitary ensemble (GUE) which was intro-

2
duced by Wigner in fifties. Ensembles with an arbitrary V' (\) were introduced in sixties, (24
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when some particular cases were studied . The new wave of interest to this class of unitary
invariant ensembles was caused by quantum field theory, where they arise in large-n limit of
quantum chromodynamics, 2-dimensional quantum gravity and bosonic string theory (see the
review papers 5, 6). Analogous ensembles are used in condensed matter theory and statistical
mechanics of random surfaces.("-®)

Denote by pp(A1, ..., Ap) the joint probability density of all eigenvalues which we assume to
be symmetric without loss of generality. Let

P (A, ) = /pn()\l,...,)\l,)\lH,...An)d)\l+1...d)\n (1.2)
be its I-th marginal distribution density. The simplest case of pgn)()\l) is of particular interest.

Indeed, denote by )\gn), ey )\%n) eigenvalues of a random Hermitian matrix M and set

NaA) =1 Y 1 A=(ab) (1.3)
nAE")eA

This is their normalized counting function (empirical eigenvalue distribution). Then

BIN,A)} = [ A 0ax= [ puar (L.4)

where E{...} denotes the expectation with respect to density (1.1).
In the recent paper(*) it was proved that if V(\) is bounded below for all A € R and satisfies
the conditions
[V(A)| > (24 ¢€)log|A|, |A] > Ly (1.5a)

for some Lg and
V(A1) = V(A)| S C(A)[A1 = A", Ao <A (1.5b)

for any 0 < A < oo and some 7 > 0, then p,(\) converges to the limiting density p(\) (density
of states) in the Hilbert space defined by the norm

(~ [ 10812~ oOtaran) (16)

and p(A) can be found from the certain variational procedure analogous to that known in the
mean field theory of statistical mechanics. Moreover, there exist positive numbers L, Ly, (L >
Ly), §; and a such that

V) = max Vi) > and pu(d) < exp{-nalV () - max V@) N >L (L7)

and for any differentiable on (—L, L) function ¢(x) which grows not faster than V() b > 0 as
|l = o0

\ [ #wpntdn~ [ ¢(u)p(u)du\ < Ol 1l 18l15*n " 1og!* n (1.8)

where symbol ||...||2 denotes the Ly-norm on (—L, L).

Here and below the symbols C and C; denote n-independent positive constants that may be
different in different formulae.

Now we formulate the universality conjecture following Dyson.(*)



Universality conjecture. For any n-independent integer I, N\g such that p(Ao) # 0 and
arbitrary fired (zy,...z;) € R}

li 2 (o)™ (A A Ty — det||S (21 — 2| o 1.9
Jim [npn(Mo)] ™" py 0+npn(>\o)’ ; 0+npn(>\o)) et||S(z1 — zp)|[j p=1 (1.9)
where .
Sin Tx
= . 1.1
S(z) - (1.10)

In other words, the limit in the r.h.s. of (1.9) is the same for all V' (\)’s in (1.1) (modulo some
weak conditions) and all )y that belong to the "bulk” of the spectrum where p(Ag) # 0. Thus
the limit (1.9) for arbitrary V has to coincide with the same limit for the archetype Gaussian
case V(A\) = A\2/2, whose form is given by the r.h.s. of (1.9) and is known since early sixties (see
Ref.1 for respective results and discussions).
In this paper we prove the following
Theorem. Assume that the function V(X) satisfies the conditions
(1)
V) > @+ologl, N> Lo (L11a)

for some Ly < oo (cf.(1.5));
(1)

sup |V"(\)] < C(L) < o<, IA| <L (1.11b)
where L is defined in (1.7);
(113) V'(X\) exists for all X and

/ (V)2(N)e FV g (1.11¢)

for some k > 0.

Then the universality conjecture (1.9) is true uniformly in (z1,...x;) varying on compact sets
of R!.

Remarks.

1. In fact the Theorem is valid without any assumptions on the growth of V' (\) provided that
conditions (i) and (ii) are valid. However our proofs are simpler if V() satisfies (iii). To prove
the Theorem without this condition we have to restrict from the very beginning all integrals to
the finite interval (—L, L) outside of which the estimate (1.7) is valid. The latter allows us to
control the remainders and to prove that they vanish exponentially as n — oc. This approach
was used in the work(®) where a kind of the variational arguments were applied to study the
density of states p(A). In our case we can do the same restriction, but since, unlike the work(?)
here we use extensively the orthogonal polynomials technique that relies strongly on integral
relations, respective estimates are more tedious and require more space. That is why we impose
the technical conditions (iii).

2. Denote by Pl(n)(A),l =0, 1,... orthogonal polynomials on R associated with the weight

wy(N) = eV, (1.12)
/ P OVPE (e ™V Nax = b, (1.13)
and by
™ () = exp{—nV(N)/2}P™(\), 1=0,1,... (1.14)
respective orthonormal system
[ 0 A = b (1.15)
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Then the joint probability density of all eigenvalues of ensemble (1.1) is(t)

(A, ) =20 I —Aj)%xp{—nznjvuj)} = (1.16)
1<j<k<n j=1
(n1) ™ (det 41 )l s ) (1.17)

and marginal densities (1.4) are

(n—1)!

P ey M) = S5 det R (g A (1.18)

where )
k) = 30 o )™ () (1.19)

=0

is known as the reproducing kernel of system (1.14). In particular
pn(N) = 01" (A) = Ka(A, ) (1.20)

where

KA p) = nilkn(kaﬂ)' (1.21)

In view of (1.18) the proof of the universality conjecture (1.9) for the random matrix ensemble
(1.1) reduces to the proof of the limiting relation

lim [pn (Ao)]~ K (Mo + Aot Yy sinrle—y) 1.22
AL QoI En Qo G ) = ra =) 122
that being rewritten as
i [y (Ao, Ao)] ™ En (A T Y _ sinm(@ —y) 1.2
A8 (D0; o)) k(R + s o+ R =) = =T (:23)

can be regarded as a conjecture of purely analytic nature concerning the orthogonal polynomial
(1.13). Since for a complete systems of orthonormal functions we have the relation

S 0wl (1) = 5(1 — ) (1.24)

J=0

the result (1.23) can be viewed as the one saying that the fine ("magnified”) structure of the
0-function in (1.24) is universal and is given by the r.h.s. of (1.23). The result (1.23) can be
readily proven if the precise enough asymptotic formula for respective orthogonal polynomials
is known. Let us consider the simplest ("toy”) case of an n-independent weight supported on
a finite interval, say interval [—1,1]. By using classical asymptotic formulae('®) we find that in
this case p(A) = (mv1—A2)"1 |A| < 1 and relation (1.9) is valid for any |A\| < 1. Less trivial
case corresponds to the weight (1.12) in which V(X) = |A\|%/a with a positive . In this case
Pl(n)()\) = n'/20m (n1/2)) where {m ()}, are orthogonal polynomials associated with the n-
independent weight w(z) = exp{—|z|*/a}. The case a = 2 corresponds to the Gaussian unitary
ensemble and the Hermite polynomials as m(x). This case was studied in great details(!) on
the basis of the Plancherel-Rotah asymptotic formula(!?) describing the semiclassical regime of
quantum oscillator. For the general case a > 1 asymptotic formulae were recently obtained in
papers(11:12), By using these formulae the limiting density p()\) can be found and relation (1.9)



can be checked for A = 0 (13), Unfortunately asymptotic formulae(!112) are not precise enough

to prove (1.9) forA # 0. This can be done only for « = 4,6 where more precise asymptotic
formulae are known.

3. We mention several physical works, related to the subject of the paper. In the paper(!¥) the
scheme of proof (1.22) for A\ = 0 is proposed. It is based on the formalism developed in studying
so called double scaling limit of the quantum field theory. In the paper(!®) the new asymptotic
formula for the orthogonal polynomials Pl(n)()\), I = n+ o(1) is proposed in the case, when
the support of the density of states p()) is an interval. By using this formula authors derived
(1.22) and, moreover, found the new asymptotic regime for the smoothed correlation function of
eigenvalues for 1 >> X >> n~! ("mesoscopic” scale). These results was improved and developed
in the subsequent paper!®). In the paper(!” the universality conjecture was considered by
studying the generating functional of densities (1.18) that was computed by applying the Laplace
method to its Grassman integral representation.

4. We would like to stress, that our approach is ”local”, i.e. it is not sensitive to the form
of the support of p()\) provided that p(A\) > 0. On the other hand it is known that if V/(\) is a
polynomial of degree 2m, then the support of p(A\) may consist of several (at most m) intervals.
The physical papers(1®16) are based on the asymptotic formulas for the orthogonal polynomials
with the weight eV (®) that are valid for such V'(\), which produce the one-interval support of
p()\). This is the case if, for instance, V()) is a convex function (not necessary a polynomial)(®).

We will prove the Theorem by using the orthogonal polynomials technique that is rather
powerful and widely used in in the random matrix theory and its numerous applications. How-
ever, since the asymptotic formulae for the general case treated in the Theorem are not known
we combine the orthogonal polynomial technique with certain identities that were introduced in
the random matrix theory in the seminal paper(®.

Our paper is organized as follows. In Section 2 we give the proof of the Theorem following
the main line of the arguments. The important ingredient of our arguments is the pointwise
convergence of p,(A) to p(A) on the set {\: p(A) > 0}.

Proposition. Under the conditions of the Theorem we have for all X and n such that p(\) >
n—1/9
_ LN,
pu3) = o] < € (14 p(k)) n (1.25)

for some positive n-independent constant C.

The Proposition is also proved in Section 2. Auxiliary facts which we need to establish the
Theorem and the Proposition are proved in Section 3. We discuss some consequences of our
results in Section 4.

2 Proofs of the Proposition and the Theorem

Proof of the Proposition. Consider the Stieltjes transform of the normalized counting mea-
sure (1.3)

fa(2) E/]\;"(_di) = lzn: ! (2.1)

3
nl:l AZ_Z

and denote NV
0(2) = Blfu(2)) = [ 222 (2:2)

According to the spectral theorem

fal2) = ~TeG(2)

n



where G(z) = (M — 2z)~! is the resolvent of a Hermitian matrix M. By using Lemma 1 for
F(M) = Gi(2) (a matrix element of the resolvent) and B = B(k) = {B;-Zk) n Bk =

m Jjm=1: jm

COijOkm + zéimékj, where ¢ € C is a free parameter, it is easy to derive the identity(5)
E{(GiGri + (GZ, + nGix (C(VI(M))M + Z(VI(M))ik) =0
Since ( is arbitrary we conclude that
E{G;iGpp, + nGy(V'(M))ri} = 0.

Now if we sum over 4,k = 1,...,n this inequality and divide the result by n? we get

E{f2} + E{n 'TeV'(M)G(2)} = 0. (2.3)
By applying Lemma 3 to f(u) = (u — 2)~!, 2 = A +1in, n > 0, we find that
E{fa} = E*{fu} + O™y, (2.4)
This bound, (2.1) and (2.2) yield the relation
9a(2) + V' (N)gn(2) + Qu(2) = O(n" ") (2.5)
where . .
Qn(2) = / W pn()dp.

is well defined due to (1.7) and our conditions on V(\) (see the Theorem and Remark 1). To
proceed further we use the result (1.8) combining it with condition (1.11b). We obtain

Qu(A +in) = Q) + O~ n ™2 log! n) + O(n) (2:6)
where Vi) — V'V
Q) = [ 1= () (2.7)
n—A
Combining (2.5) and (2.6) we find that
V'(\ V()
gn(A+in %) = — 2( Ly \/< ; )> — Q) +O(n=1/3log"/?n) (2.8)
Thus on the basis of Lemma 4 we get
7 Sgn(A +in 3) = p(A) 4+ O(n~ /3 log!/? n)% (2.9)
p

On the other hand it follows from Lemmas 5 and 6 that
1
1o L 1/3y —1/4
7 Sgn (A +in Pn(A §C<1—|— )n .
7 1S )= pnV) o
This bound and (2.9) imply (1.25).
Proof of the Theorem. According to (1.18) the proof of the Theorem reduces to the proof of

the limiting relation (1.22) to the reproducing kernel (1.21) of orthonormal systems (1.14). We
use the representation

KaOup) = 2, [ TLANO = X)) = )
j=2



[T = M)exp {—gm) -3V - ivm} (2.10)

2<j<k<n

which can be derived from the well-known in the RMT() identities

-1 n—1
I i-xw= (H 7 ) det || P () P4ty Zn = n! [T ()™
1<j<k<n 1=0
where 'yl(n) is the coefficient in front of A! in the polynomial Pl(n). If we substitute these identities
into the r.h.s. of (2.10), set in the one of determinant A\; = A, in other A; = p and then integrate
the result with respect to Ao, ..., Ay, using the orthogonality of polynomials Pl(n) we obtain the
Lh.s. of (2.10).

We will consider the function K, (Ag, Ag+s/n). General case of function K, (Ag+s/n, \g+t/n)
can be reduced to K, (Ao, Ao + (s — t)/n) by using Lemma 7. Let us choose

5= logn

n

and rewrite (2.10) in the form

n )\0—)\

Kn(Ag,)\o—i—S)—exp{ V()\O)——V A0+ <f[ls M+e“o‘j)]>. (2.11)

Here and below the symbol < ... > denotes the operation E{d(Ag —A1)...}, xs(A) is the indicator
of the interval |[\| < d, and

u() = (1= xs(ho — A)) log (1 + m) .

Rewrite (2.11) as

s = xs(o =) 1o 1
Kn(Aos Ao + =) = Tn(ho) |14 cl (2 X020~ A Un(M0) Y Z=1(Ng) |, (2.12)
n =1 n )\0 — )\j

j=2
n!
where C! = =11 and
Ta(M) = exp{=5V (h) + 5V (Ao + =)} Za(ho). (2.13)
Zn(A) = ("0} (2.14)
Un(ho) = D u(Xj). (2.15)
j=2

Introduce the probability density (cf. (1.16))

n

Pin(A2s s dn) = Z (o) [T o = 2> TT (= W)?
j=2 2<j<k<n

exp{—nZV(Aj) —i—tZu()\j)} , (2.16)
j=2 j=2
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where Zt;l()\o) is the normalization factor, and respective marginal densities

P Mgy A1) = / Pen (A2, ooy An) A 9. (2.17)
In particular for ¢ =0

5 A2y eees A1) = i (M0)p (N0s Az ooy Ain). (2.18)

This allows us to rewrite (2.12) as follows

S
Kp(Xo, Ao+ —) =
n

n—1 l +1
5 xs(Xo — Aj)
1+ Z C’fz—l <E> / T)\jjpln()\% ceny >\l+1)d>\2---d>\l+1
=1 j=

(2:19)
Introduce
Rin(Ap) = — Z P (A)ur (12 (2.20)
where y
n
i (N) = (A = Xo) exp{—gV(A) + §U(>\)}Ptl(>\)
and {Py(X\)}72, are polynomials that are orthogonal with respect to the weight
(A= Xo)2exp{—nV()\) + tu())}:
/ Pu(N) Pan (M) () = Xo)2 exp{—nV (A) + tu(A) }dA = .
Then (cf.(1.18))
n — 1)
PO o) = e det RO M)l
and after the change of variables 2; = n(\j41 — Ao) (2.19) can be rewritten in the form
s
Kn(ho, X0+ ) = Tn (o) [1+
n—1 ]
s'(n—1) dz x; Tk
; T/_mi H .73]] det||R1n()\0 + = ;Ao + ) k= 1] . (2.21)
We will prove that
s n—1 l
Kol o+ 2) = Tol0) |14+ 3 7 [ H 2 et on (0 + 52 0 + )l + 015 |
(2.22)

To this end we use Lemma 9. Therefore we have to check conditions (3.41)-(3.45) of the Lemma
for A = Ry, and B = Ry,. Inequality (3.41) follows from (2.18) and Lemma 8, inequality (3.43)
follows from (2.18) and Lemma 7, and inequality (3.42) follows from representation (2.20). To
check (3.44) and (3.45) consider the derivative Rj, (Ao + £, Ao + 2) of (2.20) with respect to .
By using arguments similar to those in the proof of Lemma 5 we obtain

()\0 + , Ao + ) ;(U(AU + ) + u(>\0 + ))Rtn(>\0 + —, Ao+ y)



(1=2) [ B+ 200 Rin(ho + L. pyuin)dp. (22

If |z| < nd and |y| < nd, then the first term in the r.h.s. of (2.23) is zero. The second term can
be estimated by using the Schwarz inequality and the analogue of (3.8) for (2.20)

x
(n —2) / Rin(Mo + EaM)Rtn()\(] + %,u)u(u)du‘ <

z 1/2 Y 1/2
(1=2) [ RuaOo+ 2w luGold |0 =2) [ RO+ L aluGold| <
max [u())] [R Mo+ =, h0 + 2) - Rin(A +QA+Q)T/2 (2.24)
)?’X u tn\N0 na 0 n tn\ N0 na 0 n . .
Hence
C 1/2
‘Rfm(/\o +Z 0+ D)<= [Rm(Ao + 2 X0+ S Rin (o + 2, a0 + 3)} . (2.25)
n n nd n n n n
Besides . . . .
max Ry, (Ao + —, Ao+ =) = Rpsn(Mo+ — Ao+ =) =
t n n n n
t*
RonOo+ Zx+ 2+ [ drR, Mo+ Za+2) <
n n 0 n n
C
ROn(AO‘i‘§,>\0+£)+—Rt*n(>\0+§,>\0+£)- (2.26)
n n no n n
Thus it follows from (2.26) that for all z and ¢ (cf.(3.44))
Rin(o + S0+ 2) < CRon(o + Z, 00 + 2). (2.27)
n n n n

Combining (2.25) and (2.27) we obtain (cf.(3.44))

T Yy Ty Yy C e T T e Yy Y
|R1n(>\0+n,>\0+n) ROH(AU+n,>\0+n)| < m;RUn (A0+n,>\g+n)R0n (A0+n,>\g+n). (2.28)

Inequality (2.28), identity (2.18) and Lemma 8 guarantee condition (3.44) of Lemma 9. Condi-
tion (3.45) can be proved by similar arguments. Thus we can apply Lemma 9 to the expression
in the r.h.s. of (2.21) and obtain (2.22).

By using the analogue of representation (2.10) for Ron, (X, 1) we get

_ Kn(>\01 A)Kn()‘(]a M)

ROn(AaM) = Kn(AaM) K (}\0 )\0)
n 9

(2.29)

We will use this representation to prove that we can replace the function Ry, (A, ) in the r.h.s.
of (2.22) by

k— ‘/E]') _ Kn(>\0, Ao — fvj/n)Kn(AOa Ao + ka/n)

X
R*(z;, 21) = Ky (Mo, A . 2.30
(2, 71) (Ao, 0 + n K, (Xos o) (2:30)

We use again Lemma 9 for A = Ry,, B = R*. As it was explained above, conditions (3.41)-
(3.43) for this A are true and thus we have to check (3.44) and (3.45). Since according to (2.29)
and (2.30)

* y—x T Yy
|R*(z,y) — Ron(z,y)| < |Kn(Xo, Ao + T) — Ky(Mo + g,ko + E) +



K, (Mo, Ao +y/n)
KTL(AO; >\U)

it suffices to check that uniformly in |y| < nd and n — oo

|Kn()\0,)\0 +$/n) — Kn()\(),)\(] — x/n)|

x - Cx?
Ko+ =20 + 2) = Ka(do, do + TSP < S Jaf <1, (2:31)
and 5 C(nd)?
" % e+ Y- Ty n
[ IR0+ 2%+ 2) = Koo do + T Pds < ST (232

Estimate (2.31) follows from Lemma 7, because |z|,|y| < nd = logn. Estimate (2.32) can be
obtained if we integrate (2.31) with respect to z. Thus we have proved that

nll

s no L dr; 1
Kn(Xo, X0+ =) = Tu(Xo) |1 — det || R* (x5, zp) [} —)|. (@
Ooda+ 2 =) 1452 7 [ TT T det 1 ol + OG- 239

The next step is to prove that we can replace the integral over the interval (—nd,nd) in the
r.h.s. of (2.33) by the integral over the whole axis R. To this end let us notice first that since
R*(z,x) = R*(—z, —x)

ns dz; * l n dz; * l
/ H — det |[R(z, zx)[j =1 = / H —= det [|R*(zj, z) (1 — Jji) [ p=1- (2.34)

Besides

— : dmj * l no dmj * l
= | [ T 52 et @) (= d)llpms = [ T 52 det | o) (L= 00| <
j=1 "1 N0 j—1

J

I P
))d j)d
ZCZp/H ( Xn&(-T] £ g H Xn6 -73] ‘d t||R*(ZE],.’L‘k)(1—(5jk) l’ _ ‘S
p=1 j=1 ;1 j=p+1 7|
l l—p p (1 _ ) )
m Xno (%)) d
20?2%/11 T
p:l m=0 ]:1 J
p+m l
1- i))dz; )d *
[[ Sl X0 et o)1~ 80l <
i=p+1 J k=p+m+1
1/2
I (1= Xno()))dz; " (1= xa(zi))dz; 1
Sor o IO e T Cpele 1 s
j=1 ] i=p+1 J k=p+m+1
/ﬂ (L= xslry)day " (0= x(eo)dos
i |z [3/4 iy P
I ( )d 1/2
X1(zk)dzy « 2
[T Ao |det | [R (g ) (1= )l | ¢
k=p+m+1 | 2]

The first factor in the r.h.s. of the last inequality can be estimated by (nd)~?/*C*~P. To estimate
the second one we repeat almost literally the arguments of Lemma 9. We obtain

A < l(l+2)/20l(n6)71/4.
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Therefore

n—1
K, (Mo, Ao +%) n(Ao) [1—!— Z lll/H dz; det||R*($]7$k)||jk 1+0 <W>} - (2.35)

Now by using the formula

45000k |1
7,k=1

det ||ajk| |’ p—o = aoo det ||a;) —

we obtain from (2.35)

Ky (Ao Ao + %) = [ + Z ., / H dw] det ||Sp (25 — x|} g=o + O (W)]

(2.36)
where 2o = 0 and Sy, (z) = Kn(Xo, Ao + ). The integral in the r.h.s. of (2.36) can be computed
by using the Fourier integral technique. This is done in Lemma 11 of Section 3. According to

that Lemma ) (%) )
s sin oy (Ao)s
K —) =T _— — |- 2.
WQonda o+ 2) = Ty ) | TS 1 0 ()| (2.37)

Comparing this expression with (1.22) we see that to finish the proof of the Theorem we have
to establish the relation
Jim T (Ao) = p(Xo)-

This relation follows from the Proposition and Lemma 10 of Section 3. Theorem is proved.

3 . Auxiliary results

In this section we prove a number of facts that we use in the proofs of the Theorem and the
Proposition (Sec.2).

Lemma 1 Let F(t),t € R be a continuously differentiable and polynomially bounded function,
and B be an arbitrary Hermitian matriz. Then

E{Fz(M)} —nE{F(M)TrV'(M)B} =0 (3.1)
where Fiy (M) = lime_,o0 e " [F(M + eB) — F(M)].
Proof. We obtain the Lemma by differentiating with respect to ¢ the identity

/ exp{—nTyV (M + tB)}F(M + tB)dM — / exp{—nTYyV (M)} F(M)dM

that follows from the invariance of the measure dM with respect to shift M — M + B by an
arbitrary Hermitian matrix B.
Remark. This lemma was in fact proved by Bessis et al.(%)

Lemma 2 Let ky, (X, ) be defined by (1.19). Then

[ K20 mirdu < . (32
and for a =1,2
[0 = ROl < SO0 + @ )), (3.3)
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Proof. It follows from the orthogonality relations (1.15) that for j = 0,1,2, ...
riPjt1(A) + 71 Pj1(X) = APj(A)  (r-1=0) (3.4)

where

rj = / AP;(N)Pjp1(N)e™™ N ax (3.5)

and we omit superscript n to simplify notations. Denote by J = {ij}szl the Jacobi matrix
defined by (3.4):

Jik =101k + 151051 k- (3.6)
Then for any nonnegative integer p
()i = [ 26 O ). (37)
By using the identity
1
[ K2 mdi = SKa 0 ), (3.8)
and (3.7) for p = 1,2 we find that the Lh.s. of (3.2) is
n—1 n—1
2\ D= 22 T |- (3.9)
j=0 k=0
This relation and (3.6) yield
n? /(A — )’ K2\, p)drdp = 2r2 . (3.10)

Using (1.7) and (1.19)-(1.21) we obtain that for some n-independent a, A, L > 0

W < npu(Y) < mexpl-anlV(3) — max VGl M2 L. (3.11)

and then (3.5) implies the bound
Ir| < C (3.12)

for some C. This bound and (3.10) imply (3.2). Similar arguments and equation (3.4) yield
w2 [ = WKZO p)dis = Yns (Nhn (V.

Now (3.3) follows from this identity and (3.12). The case o = 2 in the Lh.s. of (3.3) can be
proved analogously. Lemma 2 is proved.

Lemma 3 Let f(u), u € R, be a bounded and Holder continuous function:

[F(N) = F)] < CIA = pl® (3.13)

for some C >0 and 0 < a <1 and

where {A;") }i—1 are eigenvalues of a random matriz. Then
D{fn} = E{|fn — B{fa}’} < Cin™'7, (3.14)

12



Proof. By using (1.18) and (1.19) we can write (3.14) as follows

Difut =5 [17) = FPRZO. w)dxd

This representation, (3.13), the Holder inequality and the relation

/Kg(A,M)dAdu =n"! (3.15)
yield the bound
02 2752 a _1 1-a
Difa} < 5 | [ W= nPEZOwaxdu| [n7"]

which implies (3.14) in view of Lemma 2. Lemma 3 is proved.

Lemma 4 Assume that X is a point of the spectral axis at which p(\) > 0. Then

p0) = /@0 — ()24 (3.16)
where Q(X) is defined by (2.7).

Proof. According to (1.8) p,(\) converges weakly to p(A). This result allows us to perform the
limiting transition in (2.5) and to obtain for nonreal z’s the relation

g*(2) + V'(Ng(2) + Q(z) = 0 (3.17)

where g(z) is the Stietjes transform of the limiting density p(A). Definition (2.7) and condition
(1.11b) of the Theorem imply that (X +140) is a real valued, bounded function with a bounded
derivative. Then by general principles

p(N) = ~Sg(A + i0) (3.18)

3=

is also bounded. Computing the real and the imaginary parts of (3.17) rewritten as

Q
we find (3.16). Lemma 4 is proved.
Lemma 5 Under the conditions of the Theorem
sup pn(A) < C (3.20)
A
and dpn (V)
LoD <ot a0+ w0 + (3:21)

dpn(N)  dpn(X+1)

oo . ax — dt Jeo-
variables in the integral (1.2) \; — t = p;, @ = 2,...n we rewrite p,(\ + t) as follows:

Proof. We start from a simple identity Performing the change of

pn(A +1) = an/exp{—nV(A) —nZV(Huj)} ITO=w)* TI (i = pj)*dp,



Thus after differentiating with respect to ¢t we get for ¢t =0

dpgi” = —nV' (N)pn(X) — n(n — 1)/V’(>\2)pn(>\, A2y o An)dNo.d)y =
= —nV' (N Kp(\ ) —n? / V' (A2) [Kn( M A) K (Xay A2) — K2(X, A2)]dAs (3.22)
The identity (3.1) for F(M) =1 and B = 1 yields
E{TxV'(M —n/v’ (A A)dA = 0.
Hence by (3.22)
PN = [V () = VIOVIKE O ) (3.23)

Now we split this integral in two parts corresponding to the intervals |u| > L and |u| < L where
L is defined by (1.7). The former integral is bounded because of the inequality K2(\,u) <
K,(A A Ky (1, 1) and bound (1.7) for K, (A, A) = p,(A). In the latter integral we write

ERY:
Vi) V') = (- v + L2 e

for some ¢ depending on A and g and use Lemma 2 and condition (1.11b) of the Theorem.
Combining the bounds for these two integrals we obtain (3.21). To obtain (3.20) we have to use
(3.23) and (1.13). Lemma 5 is proved.

Lemma 6 Take ¢ = O(n~'/4). Then for any A and n such that p(\) > n~'/? we have

2 2 1 n-1/4
[ 0100 + vy < €5 (14 s (324

1 1 _
LR 0 + 030 < O (14 5 )0 = < (3.25)

Proof. Let us introduce the density
1 n—1
(A, ey Apet) = Z—CxP{ > V(N || YR (3.26)
1<j<k<n—1

The difference of this density from density (1.2) written for n — 1 variables Aq,...A\,—1 is that in
the former we have the factor n in the exponent while in the latter we would have n — 1. Set

- n—1[ _ 172 )
pn(\) = /pn (A A2, ey Ap_1)dAad A1 = - > [ (NP (3.27)
7=0
Then
Yn-1(A) = n[pn(A) — p, (A)]. (3.28)

Furthermore, by using the analogue of identity (3.1) for the density p,, and the arguments similar
to those proving (2.5) we obtain the relation

e +/W(m — 0(—) (3.29)

14



for the Stieltjes transform g, (z) of p, (1) and z = A +in, n > 0. Denote

2
Ap(2) =nlgn(z) — g, (2)) = 1’/)::_7_1(5)

subtract (3.29) from (2.5) and multiply the result by n. We obtain

dp, (3.30)

An(2)(gn () + g7 (2 +/Mdﬂ _ O(nim).

For z = \ + in~ /4 this relation takes the form

— V()i _1 (1)

B (V')
An(2)lga(2) + 9 (2) = V') = [ — du+0(1)
Then relation (2.8), (3.16) and (3.18) imply that
1
SA, (A +in M) < C (1 + —) .
( R ACRTOY
Using definition (3.30) we obtain for z = X + ie with e = n~'/*
b1 (1) 1
P2 (w)dp < 26 / T _dp < Cy (1 + —) €. (3.31)
/u—/\Se ! (1= N2+ é p(\)
Now we derive (3.25) from (3.31). Set
2 * * 2 \Iln—l
U1 = thp1(n’) = ‘umg‘ﬁe{d)n 1w me=suplppe A —ep’), dpa(n) < ——}
Since |y — p*| < € we have from (3.31)
o1, pox _
Lt =) < [ R (wdp < Ca(l+ —<)n T (3.32)

2
On the other hand

(‘I]:z/fl - (%‘Ijnfl

M1 :0(>‘)

1/2 )
— (49 ) =) < [ < [ G

and since
[ = / V() 1P ) < O

we obtain

W,
e |
Now if we multiply (3.32) by (3.33) we get (3.25) for 1.

To prove the analogous bounds for %2 we have to repeat above arguments for the density
(cf.(3.26))

< Csn? (3.33)

1 n+1
p'r—lz—(>‘11"'7>\n+l) = Fexp{_nZV(A])} H (>‘] _>\k)2
n jil

1<j<k<n+1

and for

n+1 1 &
:0;;()‘) = T /p:(>H A2,y >‘n+1)d>‘2"'d>‘n+1 = E Z["/)J(A)Pa
—
so that 92 (\) = n(pf (A) — pn(N)) (cf.(3.28)). Lemma 6 is proved.
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Lemma 7 If p(\g) # 0, then

x u—
[ (Ao + s do + %) Kn(Xo, Ao + —)| < Clz| ( g + [z y' WM?) . (3.34)

Proof. Repeating almost literally the derivation of (3.22) we get

d T —tz y —tx
Ly B -
dt (o + n ot n )
- — 1 - 1
on [ Koot S K Gt I ) (V/) = 5VI00 + S5) = 51700 + 20 )

To estimate the r.h.s. of this relation we split this integral in two parts corresponding to the

intervals |A| > L and |A\| < L where L is defined by (1.7). The former integral is bounded by

Cexp{ nady/2} because of the inequality K2(\,u) < K,(A\ A) Ky, (1, ) and bound (1.7) for
K, (A, A) = pp(A). In the latter integral we write

T —tx 1 y —tx

n )— EV’()\O‘F

V)~ 5V 00+ )= 5= AV O0) + 5= AV )+

2 2 1 " 1 n |3j — y|2
0 (A= 2a)2 + (A= 1)%) = SOA=A)V" )5 (A=A V" () +0 ((A — A= A) + )

n2

where y y
r — 1T — 1T
Ao = Do+ ———, Ay = do+ 22,

According to (3.7)

n

1 [ KO NVEn O MO = Ay dd = L0 050 ()

Besides, by the Schwartz inequality

Ty

2 (g VA= Aa) (A — Ay)dk‘ <

n [/ Kn(Ag, N (A — Am)zd)\/Kn()\y, A\ — Ay)QdA] v :

Now the arguments similar to those used in the proof of Lemma 2 and Lemma 5 yield the
estimate p y
y—tx
A ,>\
at K(Xo + 7 0o+

)| <

C a2
el (”’3(“) g2 O00) + G20+, O) + D gmnainy 2) |

n

Combining this estimate with (3.25) we obtain (3.34).

Lemma 8 Let pgn)(kl, A2) be specified by (1.18) for | = 2. Then uniformly in n

1M, 4z )
/ pr Mot ndo), o6 (3.35)
-1

2
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Proof. Consider

1
2(Xi — Xo)?

= (- )

2
where symbol < ... > was defined in (2.11). By the Schwarz inequality W? is bounded from
above by the product of integrals

Z [ TL 0e=22 T oo =22 exp{-nV () =0 3V}

2<j<k<n 2<j<n j=2
for 0 = £1/n. Besides, n(V(Ag) — V(Ao + o)) is bounded in n due to (1.11b). This allows us to
write the bound

1
W < C- KX + —, Ao+ )Kl/?(,\0 - >\0 — )< Oy, (3.36)

n’ =

On the other hand W can be written as

W = <ﬁ(¢1(>\i) + ¢2(>\z‘))> =

1=2

n n—1 k+1 n
<H ¢2(>\z‘)> +> Cr <H o) ] ¢2(>\z‘)>
i=2 k=1 i=2

i=k+2
where ) e
(L —n*(A = X))
¢1()\): 712()\—)\0)2 3 n|>\—)\0|<11
0, otherwise
and

1—n2()\—)\0)2, n|)\—)\0| <1,
¢2()\) = ’n2()\ - )\0)2 —1
n?(A = Xg)?

Since 0 < ¢2(A) <1, ¢1(A) >0 and < 1 >= p,(Ng), we get from this representation

W2 =pu(0)+ (= 1) [ dAhi () <5(A2 ~ ) exp {ilog ¢2<Ai>}> SENCET
=3

otherwise.

By using the Jensen inequality and (1.2) we have
(0(A2 = A) exp {315 log ¢2(Ni)})

(0(x2 = X)) -
GXP{< (A2 — A Zlogqh ) (A0, V] >} =
exp {(n ~92) / log B2 (M)pS™ (Ao, X, XA [p5" (Ao, )\)]_1} . (3.38)
According to (1.18)
n2 n — n ! !
000 X) = i (M W8 (30.0) + 2K (0, ) K (. M) (A, X) -
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(o) K2, X) = pr(N)KZ(A, V) - (3.39)
Besides, since log ¢2(N\') < 0 and
KMoy N K (Mo, NV EKn (N, A) < 2K2 (N, M) K2 (0 XY K (Ags X[ | Kn (N, N)] <
Pr(M0) K (X', A) + pn(X) K (Ao, X)
we have
/dk’ log ¢ (N) (2Kn(>\0a N K (Ao, M) Kn(X, X) = pn(R0) K5 (A X)) = pn(X) K (X0, A’)) > 0.

Hence taking into account that p,()) is bounded from above uniformly in n we get

W > —pa(Xo) + (n — 1) / dAg1 (NP5 (A, A) exp {(n ~1) / pn(N)log ¢2(>\’)d>\’} > —pn(Xo)+

1 (1 — 22)2 n
/#pé)(/\o,kwg)dmexp{ (/ |log(1 -y Idy+/ log(1 —y~ dy)}.(3.40)

-1 X
From (3.40) and (3.36) it is easy to derive (3.35).

Lemma 9 Let the functions A(z,y), B(z,y) be defined for |z|,|y| < né, § = n tlogn and
satisfy the conditions:

! a’(x) 2
A(z,y) < a(z) < Cy, / 5—dr < C7, (3.41)
1o
[ 1@y < 3, (3.42)
|A(z,z) — A(—z,—z)| < 1z, (3.43)
1 v2(z)dz
Awy) - Byl < e, [ HHE <t )l <o, (344
nd
" 4@y - Bla.y)Pds < G2, (3.45)
—nd
Then
dw] det || A 1C)!/2, 3.46
H et || A(zj, zx)[|f 41 < (10) (3.46)
and
dz ;
‘ /" H B3 (ot || Az ) I — et | Blay. ) [ogm)| < dCO)/? (347
where € = nd(e1 + €2) + €3 and C depend only on C;, 1 =1,...,5

Proof. It suffices to prove estimates (3.46) and (3.47) for
Ao(xj,xp) = Az, z1) (1 — 0ji),
and
B(](ZEj,.’L‘k) = B(.’L‘j,ibk)(l — 5]k)
Indeed, due to conditions (3.43) and (3.44) the following inequalities are true

‘/né de

—nd x

S 2n561
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and

< 2nde; + 265(C3 + Cylognd)

‘/”5Bmm

and we can easily obtain (3.46) and (3.47) for general A and B from the respective bounds for
A() and BU.
Consider

dz;
/ H mjdetHAt(ﬂCg,xk)H]k 1

where Ay(zj,z) = Ao(zj,zr) + t(Bo — Ao)(zj,zx). To obtain (3.46) we have to estimate
dF
|F'(1) — F(0)|. Therefore it suffices to estimate e Differentiating F'(t), making respective

permutations of columns and rows and the same renumbering of variables we obtain

dF ns L
H | det||Dt T, T)|5, L
—n6
where
Dy(z1,2r) = (Ao — Bo)(z1,21), Di(zj, z1) = Az, 71), § > 2.
Thus

dx dz;
</ H| £ et 1o 20l e [ H| H1x () [det 1D, 20) | +
J ]

l

2

l

dx;
/ H i) TT (1= xa() T2 |det 1Dy, )l e | +
nd ; |$J| |25

m=1 j=m-+1
dz; dz;
/ H (1= x1(2)) H X1 w] — ‘detHDt(mjaxk)Hé',kl‘-l (3.48)
—né ; |$J| j=m+1 |41 J

where x1(z) is the indicator of the interval (—1,1). Let us estimate the last term

dz; dz;
- [Tt ) 1T (1) 3 [det 1DeCo, )l s
n(S |$.7| j=m+1 $]|

Other terms in the r.h.s. of (3.48) can be estimated similarly.

1/2
" dmy J ! 2 /
<] Rt =) ) 11 ) ot et Dy ol
J

j=m+1

s m 1/2
{/ H |:v |5/4 — x1(z;)) H x1(z; dm]} <

j=m+1

1/2
nd M . l N
{/ II - |z |3]/4 xi(z) I Xl(xﬂ H (), 1) } . gm+l/2, (3.49)
j

j=m+1 j=1k=1
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Here we have used the Schwartz inequality and then the Hadamard estimate for determinants(16).
Now the r.h.s. of (3.49) can be rewritten as the sum of the integrals

m

no dx.;
Iy .5 = / |.’13 |3]/4 - X1 :I:] H X1 *’EJ Iz |2Dt (xlale) “Dg(xlamjz) <
j=m+1

né m
/ de?)J/4 (1—x1(z;)) H xi1(z;) | | Dt (21,74,)-D} (Tm, )03 (Tmy1)--ai (z;) (3.50)
j=m-+1
with at(x) = a(z) + tezb(z).

To estimate the last integral we start integrating with respect to the ”free” variables, i.e.
the variables that do not enter the set (z;,,...,x;,,). We use bound (3.42) for the integral with
respect to 21 and bounds (3.44) and (3.45) for integrals with respect to o, ..., p,. If there is no
free variables, then we use the inequality D (2., zj,,) < (Cp+te2Cy)? which makes the variable
zj,, free. Repeating this procedure we end up either with the estimate

Ljy.j <C7 1A (3.51)
or with the estimate
Iy S0 A; (3.52)
where C' = max{2(C} + €2C3),Cy + €2C4, 2(Cy + €3C5)} and
nd dr; dz;
o 200 _ ) _ . ? J
A= [ DHanr) 1 @) ) i

with some 7,5 < m. Regarding D?(z;,z;) as the kernel of an integral operator acting in

Ly(—nd,nd) and using the bound sup,, ffz(s Dj(z;,zj)dz; for the norm of this operator and
bounds (3.42) and (3.45) we obtain that

Ij .5 < egcl.
Repeating similar argument to estimate all other terms in (3.48) we obtain (3.46) and (3.47)

Lemma 10 Let T}, be defined by (2.13). Then

T(Xo) = pulAo)] < kgn (3.53)
Proof. We will prove the following bounds:
|E{U, (M)} — gv'(xon < Csn Ylogn (3.54)
(exp{2U,(N0)}) < C (3.55)
(1U200) ~ B{UL00)}7) < (3.56)

where U, (o) is specified by (2.15). Assuming that these bounds are true it is easy to prove
(3.53) by using the Schwarz inequality and elementary inequality |e® — 1| < |z|(e” + 1).
To prove (3.54) take &; = n~ /% and rewrite E{U,(\)} as follows
E(Un ()} = (0= 1) [ upn(0dA = [ (= Du(X) = $() (pa(N) = p(V) d+
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/¢(>\) (Pn(A) = p(X)) dA + (n —1) /U(A)P(A)CD\ (3.57)
where ¢()) is a differantiable function of the form:

A+ — A ( s A— Ao+ 61 s
—————In

(n —1)u(N), otherwise

Using the Proposition and Lemma 4 one can estimate the first integral I; in the r.h.s. of (3.57)
as follows

L <Cn~'/* /A i ((n — D]uN)| + [¢(N)]) dX < Csn™*logn (3.58)
—A0 1

To estimate the second integral we use inequality (1.8) according to which
[ 40 (u) = ) | < O 2 og! 2 ¢ 31011 = €y P hog 2 (3.59)

And the last integral I3 in the r.h.s. of (3.57) can be calculated by using the result(¥), according
to which for any A: p(\) #0

1
/log A= X|p(\)d)\ = EV(A) + const (3.60)

Thus we have )
Iy = "; (Vo + 5/n) — V(X)) + O((ndy)™h) (3.61)

Relations (3.57)-(3.61) prove (3.54).
To prove (3.55) consider f(¢) = log (exp{tUn(Xo)}). Since f(t) is a convex function

£(2) < £(0) +2f'(2) = log pn(Xo) + 2f'(2) (3.62)

In view of (2.16)
£@)=m-1) / () Ron (A, \)dA =

(n—1) /u(A)ROH(A, NdX + (n —1) /02 dt/u(A)Rgn(A, A)d\ (3.63)

where Ry, and R}, are specified by (2.20) and (2.23). According to (2.23) the second integral
I in (3.63) can be rewritten as

L= (n—1) /02 di [/ w2 (N) Ron (0 M)A + (n — 1) /u(A)u(X)an(A, NYdAdN | <

e} 2
C [ log’(1+ %)dm + (n — 1)2/ dt/u(A)u(X)an(A, NYdAdN (3.64)
nd 0

where we have used (2.29) for A = p and (1.20) according to which Ro, (A, A) < Kp(A, ) = pp(N),
the boundedness of p,()\) and (2.27). Regarding R?, (A, \') as a kernel of integral operator R in
Ly(R) one can estimate its norm as ||R|| < max,{[ RZ,(A, \)d\ = n~!. Thus
o
(n —1)? /u(A)u(X)an(A, N)dAdN < n/uz(A)d)\ <C [ log*(1l 4z "dz < % (3.65)
nd n

To estimate the first integral I; in the r.h.s. of (3.63) we use again (2.29). Then

n—1

Pn(Ao)

I=(n—1) /u(A)Rgn(A, N\ = (n—1) /u(A)Kn(A, A — /u()\)K,%()\g, A)d) =
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S _ max |u(\)] sy _
5V (M) +O(n 41ogn) + 0O <nm/Kg(AO,A)dA) = 5V (%) + O((nd) 1) (3.66)

Here we have used (3.54) to calculate (n — 1) [ u(X) K, (X, A)dA. Relations (3.62)-(3.66) prove
(3.55).
To prove (3.66) let us note that in view of (3.54) and (3.66)

E{Un(M)} = <Xn: U(/\j)> +0((nd) ™)

i=2 0

where < ... >¢ denotes the expectation with respect to density (2.18). This expectation is
related to the operation < ... >= E{d(Ag — \1)...} as < ... >= pp(Ag) < ... >¢. Thus to estimate
the r.h.s. of (3.56) it is enough to estimate

<(jz":2u<xj) - <jz":2u(xj)> )> <

(n—1) /uQ(A)RUn(A, N\ — (n—1)(n—2) /u(A)u(X)Rgn(A, NYdAdN
Combining this inequality with estimate (3.64) we get (3.56). Lemma 10 is proved.

Lemma 11 Let X(z), x € R be a smooth enough and fast decaying function. Then

l ) - N\ yl+1 1+1
dz; l (i)' X1(0) 1 (=1)
=L det || X (x; — z)|[5 4o = : (3.67)
/Jl;ll T J J:k=0 1+1 2

where xg = 0.

Proof. By using the Fourier integral representation of X (z) we can write

l
Jk=0

l
det | X (a; — )l o = [ T] dpsX () det | explin p; — )
=0

where X (p) is the Fourier transform of X (z). This representation and the identity

i
/ - dx = imsignp = iw0(p)
allow us to rewrite the integral in the Lh.s. of (3.64) as follows

1 1 1 . 1

l ) 0(p1 — po) 0 - - Op1—p)
(i) [ TLdpiX@))| 02 —po) O(p2—p1) O . 0lp2—p)
§=0

0(pi — po) : .o 0
Let us compute the determinant in the domain p1,...,pm < Po, Pm+1;---,P1 = Po- Without loss
of generality we can assume that p; < pa... < P < po < Pmt1 < ... < p;. Then the determinant

22



will have the form

+1 +1 +1 +1 . .o+l +1

-1 0O -1 -1 . .o -1 -1

-1 41 0o -1 . . .o—1

-1 +1 +1 . .o -1 -1

+1 +1 +1 +1 . .o—=1 -1

+1 +1 +1 .. 41 +1 0
Subtracting the first row from [-th, (I — 1)-th,...(I — m)-th ones and then the first column from
the second, ..., m-th ones we find that determinant is equal to (—1)*~™ Therefore the Lh.s. of

(3.67) is equal to
(i) mi o [ anxwo (" axe)” ([

po o ! i)l xi+1 (_1\l+1
/dpoX(po) (2/00 dpX (p) —X(O)) _ ( )l)—(:lr (0) . 1 (21)+ ‘

o0

X (p)dp>lm =

Lemma 11 is proved.

4 . Discussion

Let us regard the set {>\§n)}§-’:1 of eigenvalues of random matrices as a point process, i.e. as the
random counting measure

vn(A) =nN,(A) = > L. (4.1)
AMea
Keeping in mind that we are studying the asymptotic behavior of the eigenvalue statistics for
large n we can define this point process either by system (1.4) of its marginal distributions or
by its generating functional

2,91 = B {exp | [ s00m(av)] | (4:2)

defined on a suitable space of test functions ¢(A), X € R. We use the simplest case of bounded
piece-wise continuous functions with a compact support. Then, by using (1.17) we find that

Oy [¢] = det(1 — kn[4]) (4.3)

where ky,[¢] is the integral operator defined on the support o4 of ¢ by the kernel
i\ 1) (1 — €90). (4.4

According to the Theorem the ”scaling” limit (1.9) of all marginal densities (1.4) is given by
(1.9) for all unitary invariant ensembles defined by (1.1), (1.7) and (1.11). To find the same limit
for the generating functional we have to replace the test function ¢(\) by ¢, (z) = ¢(z/npn(Xo)).
Then

B[] = lim @aldn] = det(1 - Qy) (4.5
where @)y is the integral operator defined on o4 by the formula
(QoN)(@) = [ Sx—y)(1—e’@)f(y)dy, =€ oy (4.6)
T
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and S(z) is defined in (1.10). These formulae contain in fact the same information as (1.9)
saying that in our case the point process

() = v (Mos do +

0

won00)) 4o

converges weakly as n — oo to the random process defined by (4.5) and (4.6) or by (1.9).
Consider now the probability

Ry ({85}521) = Priw(8,) =0, j=1,...1} (4.8)

that an ordered set of disjoint intervals A; = (a;,b;) does not contain eigenvalues. Then the
arguments similar to those proving (4.3) imply that

By (14;}121) = det(1 = Kya) (49)

where A = UézlAj and K, is the integral operator defined on A by the kernel

l
Z XA (A)kn(>¥ :U‘)XA]' (:U‘)
j=1

Setting
Q; Bi
a; = Ao + . bi= X+ 4.10
TN G T T ) 0
0 = (v, Bi), 6 =U\_0;
and using the Theorem we obtain that
Jim Ro ({A5}5-1) = () (4.11)
where 7(0) is the Fredholm determinant of the kernel
!
j=1
We can also introduce more general kernel
l
> Tixs; (@)S(z = y)xs, (y)- (4.13)
j=1

for an arbitrary collection of real 7;’s. Then if for an arbitrary collection k = (k1, ...k;) of positive
integers we consider the probability

R, ({Aj}ézla {kj}é':l) = Pr{v,(4;) = k;},
its limit (0, k) is
(_l)k 8k1+...+k[

0, k) = .
r(3,k) kil k! 8Tf1...87lk‘r

(0,7) (4.14)

7;=1

where r(d,7) is the Fredholm determinant of the kernel (4.13).
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The case | = 1 of (4.8) and (4.11) determines(!) the limiting probability distribution of
distances between nearest neighbor eigenvalues (spacings) lying in the O(n~!) neighborhood of
Ao Thus in the limit (4.10) the spacing probability distribution is the same for all ensembles
satisfying the conditions of the Theorem. For the Gaussian case formula (4.14) was obtained
in Ref.18 where some other kernels are also considered and various links of determinant (4.13)
with integrable systems and related topics are discussed.

We can also consider another asymptotic regime, making ”windows” in O(n ') -neighborhood
of different spectral points, i.e. considering joint probability distribution of the counting func-
tions (") (t1)y ey V;\Z) (tx) for distinct n-independent Ay, ..., A\x. Take for simplicity & = 2. Then

A1
we have to consider generating functional (4.2) on functions

d(p) = d1(npn (A1) (11— A1) + d2(npn(X2) (1t — A2)).

Inserting this ¢(x) in (4.2) and using the result(®) according to which pgn)()q, A2) = p(A1)p(A2)
as n — oo for distinct n-independent A1, A9 and the Theorem we obtain

Jim @[g] = @[] P[¢2]

where ®[¢] is defined by (4.5) and (4.6).

We conclude that in the "scaling” limit the local statistics eigenvalues lying in O(n~!) -
neighborhoods of distinct spectral points are independent.
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