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DERIVATION OF FORMULAS FOR Ω POTENTIAL AND MAGNETIZATION

We start with the common expression for the Ω-potential per the unit volume (see, e.g., [1, 2]):

ΩH = − 2T

(2π~)
2

eH

c
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′
∫ L

0
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(
1 + exp
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, (1)

where ζ is the chemical potential, T is the temperature, the electron energy in the magnetic field, εlc,v(p3), is given
by the equations,

εlc,v(p3) = εd(p3)±
(
e~αH| cos θ|

c
l

)1/2

, (2)

α = α(p3) = 2(b11b22)1/2(1− ã2⊥)3/2, (3)

the prime near the sum means that the term corresponding to l = 0 is taken with the additional factor 1/2, the
integration is carried out over the length L of the band-contact line in the Brillouin zone, θ = θ(p3) is angle between
the magnetic field H and the tangent to the band-contact line at the point p3. In Eq. (2) and formulas below, the
signs “+” and “−” correspond to the conduction “c” and valence “v” bands, respectively. We have also assumed the
two-fold degeneracy of these bands in spin. With Eq. (2), it is clear that ΩH is expressed in terms of the combination
H3 = H cos θ. We calculate only the part of the ΩH that depends on the magnetic field,

Ω(ζ,H) = ΩH − Ω0 , (4)

where Ω0 = limH→0 ΩH is the Ω-potential at zero magnetic field. At T = 0 we obtain from Eq. (1):
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where σ(x) = 1 if x > 0, and σ(x) = 0 if x < 0, and

w ≡ [ζ − εd(p3)]
√
c√

e~α(p3)
. (6)

Formula (5) can be rearranged as follows:
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where we have made the formal substitution x = H3l
′. Using the identity σ(x) + σ(−x) ≡ 1, one can show that∑
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Hence, Ω(ζ,H) in Eq. (7) does not depend on a sign of the w, and we can replace w by |w| in Eq. (7). Using also the
fact that σ(|w|+

√
H3l) = 1, we arrive at
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Note that the last sum in Eq. (9) is, in fact, finite due to the factor σ. Combining all the integrals containing
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and
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where [u] means the integer part of u,

u(p3) ≡ w2

H3
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[ζ − εd(p3)]2c
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=
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2πe~H
, (12)

and S(p3) is the area of the cross section of the Fermi surface by the plane perpendicular to the magnetic field and
passing through the point with the coordinate p3. Thus, equation (11) reduces to the formula:
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Using the relation

ζ(−1

2
, l)− l1/2 = ζ(−1

2
, l + 1) (14)

for the Hurwitz zeta function ζ(−1/2, x), and the asymptotic expansion of this function at x� 1 [3]:
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one can calculate the sums in Eq. (13),
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Eventually, we obtain the following expressions for the Ω potential and the magnetization at T = 0:

Ω(ζ,H)=− e3/2H3/2

2π2~3/2c3/2
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M(ζ,H)=
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where t = t(p3) is the unit vector along the tangent to the band-contact line at a point p3; ν = ν(p3) is a sign of cos θ;
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For nonzero temperatures, the Ω potential and the magnetization Mi(ζ,H, T ) can be calculated with the relation-
ships [2]:

Ω(ζ,H, T ) = −
∫ ∞
−∞

dεΩ(ε,H, 0)f ′(ε), (21)

Mi(ζ,H, T ) = −
∫ ∞
−∞

dεMi(ε,H, 0)f ′(ε), (22)

where f ′(ε) is the derivative of the Fermi function,

f ′(ε) = −
[
4T cosh2

(
ε− ζ
2T

)]−1
. (23)

WEAK MAGNETIC FIELDS

Consider the expression for the Ω potential in the limiting case of the weak magnetic field, H � HT . Specifically,
we shall assume that

uT =
T 2c

e~α(p3)H| cos θ|
� 1. (24)

Inserting formula (17) into Eq. (21), interchanging the order of the integrations, and replacing ε by the variable
√
u

defined by the formula,

ε = εd(p3)± (e~α(p3)H| cos θ|)1/2

c1/2
√
u,
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we arrive at

Ω(ζ,H, T )=
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In deriving (25), we have replaced ε by εd(p3) in the argument of the function f ′(ε). This replacement is based on
the assumption that one can choose a constant u0 so that 1� u0 � uT (and hence |ε(u0)− εd(p3)| � T ) and at the
same time |I − I(u0)| � |I|, where
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2
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and
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√
n

d(
√
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2
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√
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2[u0]2

3
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2
. (31)

Using the asymptotic expansion (15) for ζ(−1/2, x) at x� 1, one can estimate the sum (31) and the last term in the
right hand side of Eq. (28),

[u0]−1∑
n=0

∫ √n+1

√
n

d(
√
u)K1(u) = − 1

24
+O(

1

[u0]
), (32)

∫ √u0

√
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d(
√
u)K1(u) ≈ − {u}

48[u0]
(1− 3{u}+ 2{u}2) = O(

1
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where {u} ≡ u0 − [u0] < 1. Inserting formulas (32) into Eq. (28), we eventually find that

I(u0) = − 1

24
+O(

1

[u0]
),

I = −1/24, and hence

Ω(ζ,H, T )=− e2H2

24π2~c2

∫ L

0

dp3 cos2θα(p3)f ′(εd(p3)), (33)

With this Ω potential, we arrive at linear dependence of the magnetization M = −∂Ω/∂H on the magnetic field,

M(ζ,H, T )=
e2H

12π2~c2

∫ L

0

dp3(cos θ)α(p3)f ′(εd)t. (34)

Finally, it is necessary to emphasize that if we started with Eq. (18) for the magnetization rather than with Eq. (17)
for the Ω potential and used the same approach in analyzing the case of weak magnetic fields, we would not obtain
the correct expression (34) for the magnetization. This is due to the fact that the integral

∫∞
0
K(u)d

√
u does not

converge (the integral
∫ u0

0
K(u)d

√
u oscillates with changing u0, and the amplitude of these oscillations does not tend

to zero at large u0).

THE DE HAAS - VAN ALPHEN OSCILLATIONS

The quantity u defined by Eq. (12) changes along the nodal line from its minimal value umin to its maximal value
umax. These extremal values of u correspond to minimal and maximal areas (in p3) of Fermi-surface cross sections
by planes perpendicular to the magnetic field. Consider Eq. (18) in the case when

umin, umax, umax − umin � 1. (35)

Using Eqs. (15) and (20), we obtain for large u:

K(u) ≈ 1

2

√
u({u} − 1

2
) = −

√
u

2π

∞∑
n=1

sin(2πnu)

n
, (36)

where {u} = u− [u], and [u] is the integer part of u. Thus, the integrand in Eq. (18) highly oscillates about zero, and
only the band-contact-line portions located near the points at which u reaches the extremal values give contributions
to Eq. (18). Let u reach the extremal value uex at the point pex3 , and let us calculate the appropriate contribution to
the magnetization. Near pex3 we can write the following expansion for u(p3):

u(p3) ≈ uex ±
1

2

∣∣∣∣∂2S∂p23
∣∣∣∣ c

2πe~H
(p3 − pex3 )2 ≡ uex ±B(δp3)2, (37)

where δp3 ≡ p3 − pex3 , uex = umin or umax, the upper sign corresponds to umin and the lower sign to umax. Inserting
Eqs. (36) and (37) into formula (18), we arrive at

M(ζ,H)≈− e

4π3~2c

∞∑
n=1

|ζ − εd(pex3 )|(νt)p3=pex
3

n

∫
dp3
(
sin(2πnuex) cos[2πnB(δp3)2]±cos(2πnuex) sin[2πnB(δp3)2]

)
.(38)

One may set the infinite limits in this integral over p3. Then, we find

M(ζ,H)≈ −
( e
~c

)3/2 H1/2

2
√

2π5/2

∣∣∣∣∂2S∂p23
∣∣∣∣−1/2|ζ − εd(pex3 )|(νt)p3=pex

3

∞∑
n=1

1

n3/2
sin

(
n
cSex

e~H
± π

4

)
, (39)

where the expressions for B, Eq. (37), and for uex, Eq. (12), have been inserted; Sex is the area of the extremal
cross section perpendicular to the magnetic field. Formula (39) describes the de Haas - van Alphen oscillations. In
particular, we obtain the followin expression for the magnetization component M‖ parallel to the magnetic field:

M‖(ζ,H)≈ −
( e
~c

)3/2 H1/2

2
√

2π5/2

∣∣∣∣∂2S∂p23
∣∣∣∣−1/2|ζ − εd(pex3 )| | cos[θ(pex3 )]|

∞∑
n=1

1

n3/2
sin

(
n
cSex

e~H
± π

4

)
. (40)
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Compare Eq. (40) with the well-known formula describing the de Haas - van Alphen effect at T = 0 [1, 4–6],

M‖(ζ,H)≈ −
( e
~c

)3/2 H1/2Sex

2
√

2π7/2|m∗|

∣∣∣∣∂2S∂p2z
∣∣∣∣−1/2 ∞∑

n=1

1

n3/2
sin

(
2πn(

cSex

2πe~H
− γ)± π

4

)
, (41)

where the component pz is along the magnetic field, m∗ is the cyclotron mass, the constant γ appears in the semi-
classical quantization rule,

S(ε) =
2πe~H
c

(n+ γ), (42)

and is expressed in term of the Berry phase ΦB for the appropriate electron orbit [7]:

γ =
1

2
− ΦB

2π
. (43)

If the electron orbit surrounds a band-contact line, ΦB = π and γ = 0; otherwise ΦB = 0 and γ = 1/2 [7]. In Eq. (41),
as in Eqs. (18) and (40), we completely neglect the electron spin. In the case a line-node semimetal, one has

γ = 0, Sex = 2π
[ζ − εd(pex3 )]2

α| cos[θ(pex3 )]|
, m∗ =

2[ζ − εd(pex3 )]

α| cos[θ(pex3 )]|
,

∂2S

∂p2z
=

1

(cos[θ(pex3 )])2
∂2S

∂p23
. (44)

Inserting these expressions into Eq. (41), we arrive at formula (40).
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